Mdm of the Poisson distribution
From Maths
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
TODO: Link with Poisson distribution page
Contents
[hide]Statement
Let X\sim\text{Poi} (\lambda) for some \lambda\in\mathbb{R}_{>0} . X may take any value in \mathbb{N}_0
We will show that
- \text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!} [1]
- Where u:\eq\text{Floor}(\lambda)
I have confirmed this experimentally in Experimental evidence for the Mdm of the Poisson distribution
Recall the Mdm is defined as:
- \text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]
\newcommand{\LHS}[0]{ {\text{Mdm}(X)} }
Calculation
- \text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]:\eq\sum^\infty_{k\eq 0}\big\vert X-\mathbb{E}[X]\big\vert\cdot\P{X\eq k}
- \eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\mathbb{E}[X]\big\vert \eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert
- Note that:
- if k\ge \lambda\ \implies\ k-\lambda\ge 0\ \implies\ \vert k-\lambda\vert \eq k-\lambda
- if k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k
- Define the following two values:
- u:\eq\text{RoundDownToInt}(\lambda)[Note 1] (also known as the floor function[Note 2] and
- v:\eq u+1[Note 3]
- This means we have u\le \lambda and v\ge \lambda, specifically, we have the following two cases:
- if k\le u and as u\le \lambda we see k\le \lambda and
- if k> u then k \ge u+1\eq v \ge\lambda so k\ge \lambda
- Now, from above: \LHS{}\eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert
- \eq e^{-\lambda}{\left[\frac{\lambda^0}{0!}\big\vert 0-\lambda\vert \ +\ \sum^\infty_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\right]}
- \eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert \right]} with the understanding that if u\eq 0 that the sum from k\eq 1 to u evaluates to 0, obviously
- Notice now that:
- For the first sum, where 1\le k\le u (specifically that k\le u) we have k\le \lambda
- and that from further above we noticed if k\le \lambda then \big\vert k-\lambda\big\vert \eq \lambda-k
- For the second sum, where k > u that this meant k\ge \lambda
- and that from further above we noticed if k\ge\lambda then \big\vert k-\lambda\big\vert\eq k-\lambda, so
- For the first sum, where 1\le k\le u (specifically that k\le u) we have k\le \lambda
- \LHS{}\eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert \right]}
- \eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}(\lambda-k)\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}( k-\lambda)\right]}
- we now expand these sums:
- \eq e^{-\lambda}{\Bigg[\lambda\ +\ \overbrace{\sum^u_{k\eq 1}\frac{\lambda^{k+1} }{k!}\ -\ \sum^u_{k\eq 1}\frac{k\lambda^k}{k!} }^\text{first sum}\ +\ \overbrace{\sum^\infty_{k\eq v}\frac{k\lambda^k}{k!}-\sum^\infty_{k\eq v}\frac{\lambda^{k+1} }{k!} }^\text{second sum}\ \Bigg]}
- \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v}\frac{\lambda^k}{(k-1)!}\ -\ \sum^u_{k\eq 1}\frac{\lambda^k}{(k-1)!}\right)}\right]} , by grouping the terms and factorising where we can
- \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k+1} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k+1} }{k!}\right)}\right]} [Note 4] by reindexing the latter two sums
- \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]}
- \eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]}
- \eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}(\lambda-k)\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}( k-\lambda)\right]}
- For convienence let us assign the sums letters:
- \eq \lambda e^{-\lambda}{\Bigg[1\ +\ \underbrace{\sum^u_{k\eq 1}\frac{\lambda^k}{k!} }_\text{A}\ -\ \underbrace{\sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{\sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!} }_\text{C}\ -\ \underbrace{\sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!} }_\text{D} \Bigg]}
- Now we combine the sums:
- \LHS{}\eq\lambda e^{-\lambda}{\Bigg[1+\underbrace{\sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!}+\frac{\lambda^u}{u!} }_\text{A}\ -\ \underbrace{\sum_{k\eq v}^\infty \frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{ \frac{\lambda^{v-1} }{(v-1)!}\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{C}\ -\ \underbrace{ \frac{\lambda^0}{0!}\ -\ \sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!} }_\text{D} \Bigg]}
- \eq \lambda e^{-\lambda}{\Bigg[ 1\ -\ \frac{\lambda^0}{0!} \ +\ \frac{\lambda^u }{u!} \ +\ \frac{\lambda^{v-1} }{(v-1)!} \Bigg]} - as the sum above in \text{ A } cancels with the sum part of \text{ D }, and \text{ B } cancels with the sum part of \text{ C }
- \eq \lambda e^{-\lambda}{\left[ 1-1+2\frac{\lambda^u}{u!} \right]} - using that v-1\eq u and tidying up
- \eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!}
- \LHS{}\eq\lambda e^{-\lambda}{\Bigg[1+\underbrace{\sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!}+\frac{\lambda^u}{u!} }_\text{A}\ -\ \underbrace{\sum_{k\eq v}^\infty \frac{\lambda^k}{k!} }_\text{B}\ +\ \underbrace{ \frac{\lambda^{v-1} }{(v-1)!}\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!} }_\text{C}\ -\ \underbrace{ \frac{\lambda^0}{0!}\ -\ \sum^{u-1}_{k\eq 1}\frac{\lambda^k}{k!} }_\text{D} \Bigg]}
- Thus we see \text{Mdm}(X)\eq 2\lambda e^{-\lambda}\frac{\lambda^u}{u!}
Notes
- Jump up ↑ Recall \lambda>0, this means u\ge 0 and thus u\in\mathbb{N}_0
- Jump up ↑ Which is sometimes written:
- TODO: It's [n] but with the bottom or top notches removed from the square brackets?
-
- Jump up ↑ Notice:
- If \lambda is not \in\mathbb{N}_{\ge 0} then u+1\eq\text{RoundUpToInt}(\lambda), so u+1\eq v\ge \lambda
- If \lambda is in \mathbb{N}_{\ge 0} then u\eq\lambda and v\eq u+1> u\eq \lambda so v > \lambda
- Notice \big(v > \lambda\big)\implies\big(v\ge \lambda\big)
- Jump up ↑ Note that the third sum should have "\infty-1" as its upper index, however remember that when a sum is to \infty this is actually a limit, it was in this case:
- \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq v}\cdots\right)
- \lim_{n\rightarrow\infty}\left(\sum^{n-1}_{k\eq v-1}\cdots\right)
References
- Jump up ↑ Alec's own work, I actually kept muddling it up on paper so this page IS the reference!
Categories:
- XXX Todo
- Todo
- Theorems
- Theorems, lemmas and corollaries
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability