Group factorisation theorem

From Maths
Revision as of 23:17, 15 July 2016 by Alec (Talk | contribs) (Saving work)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Statement

[ilmath]\xymatrix{G \ar[r]^\varphi \ar[d]^\pi & H \\ G/N \ar@{.>}[ur]_{\overline{\varphi}} }[/ilmath]
Diagram
Let [ilmath]G[/ilmath] and [ilmath]H[/ilmath] be groups, and consider any [ilmath]N\trianglelefteq G[/ilmath] [Note 1] and [ilmath]\pi:G\rightarrow G/N[/ilmath] the canonical projection of the quotient group, let [ilmath]\varphi:G\rightarrow H[/ilmath] be any group homomorphism, then[1]:
  • If [ilmath]N\subseteq\text{Ker}(\varphi)[/ilmath] then [ilmath]\varphi[/ilmath] factors uniquely through [ilmath]\pi[/ilmath] to yield [ilmath]\bar{\varphi}:G/N\rightarrow H[/ilmath] given by [ilmath]\bar{\varphi}:[g]\mapsto\varphi(g)[/ilmath] [Note 2]

Additionally we have [ilmath]\varphi=\overline{\varphi}\circ\pi[/ilmath] (or in other terms, the diagram on the right commutes)

Proof

Notes

  1. The notation [ilmath]A\trianglelefteq B[/ilmath] means [ilmath]A[/ilmath] is a normal subgroup of the group [ilmath]B[/ilmath].
  2. This may look strange as obviously you're thinking "what if we took a different representative [ilmath]h\in[g][/ilmath] with [ilmath]h\ne g[/ilmath], then we'd have [ilmath]\varphi(h)[/ilmath] instead of [ilmath]\varphi(g)[/ilmath]!", these are actually the same, see Factor (function) for more details, I shall explain this here.
    • Technically we have this: [ilmath]\bar{\varphi}:u\mapsto\varphi(\pi^{-1}(u))[/ilmath] for the definition of [ilmath]\bar{\varphi} [/ilmath]
      • Note though that if [ilmath]g,h\in\pi^{-1}(u)[/ilmath] that:
        • [ilmath]\pi(g)=\pi(h)=u[/ilmath] and by hypothesis we have [ilmath][\pi(x)=\pi(y)]\implies[\varphi(x)=\varphi(y)][/ilmath]
          • Thus [ilmath]\varphi(g)=\varphi(h)[/ilmath]
      • So whichever representative of [ilmath][g][/ilmath] we use [ilmath]\varphi(h)[/ilmath] for [ilmath]h\in[g][/ilmath] is the same.
    • This is actually all dealt with as a part of factor (function) not this theorem. However it is worth illustrating.

References

  1. Abstract Algebra - Pierre Antoine Grillet