Abstract Algebra (subject)

From Maths
Revision as of 10:25, 20 February 2016 by Alec (Talk | contribs) (Created page with "{{Stub page|Needs fleshing out}} __TOC__ ==Overview== Abstract algebra is the study of functions (a right-unique relation, that map...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Needs fleshing out

Overview

Abstract algebra is the study of functions (a right-unique relation, that maps everything in its domain to something) where that function has certain properties, for example, associativity, or an element (called the identity) which does nothing.

Learning Abstract Algebra

There are two styles of learning, some start at fields and work down towards rings then to groups, the idea being that the reader is vaguely familiar with fields (via the real numbers, integers so forth) and then go to more abstract structures, others go via fields towards vector spaces then into linear algebra - which is a branch of abstract algebra.

However I recommend that the reader do the other (more common in modern texts) route, that is starting at groups, then heading to rings, then fields, then vector spaces. There is a group in every field, so it isn't like the reader will never have used group properties, there are also plenty of examples. I recommend the first year, or the reader who doesn't know where to start to start with group theory and explore there, heading slowly towards ring theory then to the primitives of linear algebra

Template:Ring theory navbox