Notes:Mdm of a discrete distribution lemma - round 2
From Maths
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} } \newcommand{\Min}[1]{\text{Min}{\left({#1}\right)} } \newcommand{\Floor}[1]{\text{Floor}{\left({#1}\right)} } \newcommand{\l}[0]{\lambda} Contents
[hide]Document
I claim:
- \forall\lambda\in\mathbb{R}_{\ge 0}\forall\alpha,\beta\in\mathbb{N}_0\forall f\in\mathcal{F}\big(\{\alpha,\alpha+1,\ldots,\beta-1,\beta\}\subseteq\mathbb{N}_0,\mathbb{R}_{\ge 0}\big)\left[\big(\alpha\le\beta\big)\implies\left(\sum^\beta_{k\eq\alpha}\big\vert k-\lambda\big\vert f(k)\eq \sum_{k\eq\alpha}^{\Min{\Floor{\lambda,\beta} } }\big(\lambda-k\big)f(k)+\sum^\beta_{k\eq\Min{\Floor{\l},\beta}+1}\big(k-\lambda\big)f(k)\right)\right]
Lemmas
- \forall k\in\mathbb{N}_0\forall\lambda\in\mathbb{R}_{\ge 0}\big[\big(k\le\Floor{\l}\big)\implies\big(\vert k-\l\vert\eq \l-k\big)\big] - Proved on paper
- \forall k\in\mathbb{N}_0\forall\lambda\in\mathbb{R}_{\ge 0}\big[\big(k\ge\Floor{\l}\big)\implies\big(\vert k-\l\vert\eq k-\l\big)\big] - Proved on paper
Process
We partition \{\alpha,\ldots,\beta\} so that:
- on one part k\le\Floor{\l} holds, and on the other part k>\Floor{\l} holds - OR -
- on one part k<\Floor{\l} holds, and on the other part k\ge\Floor{\l} holds
We then sum over these parts, paying special attention to what happens if either part of the partition is empty.
Key workings
There are 2 key statements:
- Given k\le \l:
- Given k\ge \l
Notes
- Jump up ↑ As:
- k\le \l
- \implies k\le \l<\Floor{\l}+1 - by corollary on the page Floor function
- \implies k<\Floor{\l}+1
- \implies k\le\Floor{\l} by the nature of strict orderings on the natural numbers, TODO: Link somewhere!
- k\le \l
- Jump up ↑ Simply because \Floor{\l}\le \lambda - as described on the floor function page
- Jump up ↑ As: \Floor{\lambda}\le\lambda\le k
- Jump up ↑ Suppose \Floor{\l}\le k
- From the floor function page we know that \Floor{\l}\le \l <\Floor{\l}+1
- So using only the 2nd inequality there: \l-1<\Floor{\l}
- Thus \l-1<\Floor{\l}\le k
- or just: \l-1<k
- \l\le k - by the strict orderings related to orderings on the natural numbers TODO: Also link this somewhere!
- From the floor function page we know that \Floor{\l}\le \l <\Floor{\l}+1