Every lingering sequence has a convergent subsequence
From Maths
Contents
Statement
Let [ilmath](X,d)[/ilmath] be a metric space, then[1]:
- [math]\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0]\right)\implies\left(\exists(k_n)_{n=1}^\infty\subseteq\mathbb{N}\left[(\forall n\in\mathbb{N}[k_n<k_{n+1}])\implies\left(\exists x'\in X\left[\lim_{n\rightarrow\infty}(x_{k_n})=x'\right]\right)\right]\right)\right][/math]
This is just a verbose way of expressing the statement that:
- Given a sequence [ilmath](x_n)_{n=1}^\infty\subseteq X[/ilmath] if it is a lingering sequence then it has a subsequence that converges
Proof
TODO: Write proof
Proof outline:
- Take [ilmath]k_1[/ilmath] to be the index of any point of the sequence in [ilmath]B_1(x)[/ilmath]
- Take [ilmath]k_2[/ilmath] to be any index AFTER [ilmath]k_1[/ilmath] of the sequence in the ball [ilmath]B_\frac{1}{2}(x)[/ilmath]
- ...
- Show the sequence [ilmath](x_{k_n})_{n=1}^\infty[/ilmath] converges to [ilmath]x[/ilmath]
We have exhibited a convergent subsequence, we're done.
See also
References
Categories:
- Todo
- Theorems
- Theorems, lemmas and corollaries
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Real Analysis Theorems
- Real Analysis Theorems, lemmas and corollaries
- Real Analysis
- Metric Space Theorems
- Metric Space Theorems, lemmas and corollaries
- Metric Space
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology