Conditional probability
From Maths
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }
Contents
[hide]Definition
Let (S,\Omega,\mathbb{P}) be a probability space and let C\in\Omega be an event such that \P{C}>0, then we may define a new probability space, (C,\Omega_C,\mathbb{P}_C:\Omega_C\rightarrow\mathbb{R}) where:
- \Omega_C is the trace \sigma-algebra, \Omega_C:\eq{\left\{ C\cap A\ \middle\vert\ A\in\Omega\right\} } , and
- \mathbb{P}_C:\Omega_C\rightarrow\mathbb{R} defined by \P[_C]{A}:\eq \frac{\P{A} }{\P{C} }
- Notice that as A\in\Omega_C that \exists A'\in\Omega[A\eq A'\cap C] and thus \P{A'\cap C}\eq\P{A} as of course a \sigma-algebra