Cauchy-Schwarz inequality for inner product spaces

From Maths
Jump to: navigation, search
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Flesh out statement

\newcommand{\ip}[2][]{\langle {#2} \rangle {#1} }

Statement

Let \langle\cdot,\cdot\rangle:X\times X\rightarrow\mathbb{K} be an inner product so (X,\langle\cdot,\cdot\rangle) is an inner product space, then[1]:

  • \forall x,y\in X\left[\vert\ip{x,y}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\right]

Proof

  • Let x,y\in X be given
    • We have two cases now, y\eq 0 and y\neq 0
      1. y\eq 0 case
        • We now have two more cases, x\eq 0 and x\neq 0
          1. x\eq 0
            • Now \ip{x,y}\eq 0, \ip{x,x}\eq 0 and \ip{y,y}\eq 0 so:
              • \vert\ip{x,y}\vert\eq 0\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0\times 0\eq 0 is the case
                • 0\le 0 obviously holds. We're done in this case
          2. x\neq 0
            • Now \ip{x,y}:\eq\ip{x,0}\eq\overline{\ip{0,x} }\eq \overline{0\ip{z,x} } for any z\in X
              \eq 0\ip{x,z}\eq 0
              • Now \vert\ip{x,y}\vert\eq 0 and \sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0\sqrt{\ip{x,x} }\eq 0 - as y\eq 0 \ip{y,y}\eq 0
                • \vert\ip{x,y}\vert\eq 0\le \sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0 gives us 0\le 0 which is obviously true (we have equality so we have \le)
      2. y\neq 0 case
        • Consider \lambda\in\mathbb{K} then:
          • 0\le\ip{x-\lambda y,x-\lambda y} (as for an inner product \forall z\in X[\ip{z,z}\in\mathbb{R}\wedge\ip{z,z}\ge 0]
            • Then \ip{x-\lambda y,x-\lambda y}\eq \ip{x,x-\lambda y}-\lambda\ip{y,x-\lambda y}
              \eq\overline{\ip{x-\lambda y,x} }-\lambda\big(\overline{\ip{x-\lambda y,y} }\big)
              \eq\overline{\ip{x,x}-\lambda\ip{y,x} }-\lambda\big(\overline{\ip{x,y} - \lambda\ip{y,y} }\big)
              \eq\ip{x,x}-\overline{\lambda\ip{y,x} }-\lambda\ip{y,x} + \lambda\overline{\lambda}\ip{y,y}
              \eq\ip{x,x}-\overline{\lambda\ip{y,x} }-\lambda\ip{y,x} + \vert\lambda\vert^2\ip{y,y} [Note 1]
              \eq\ip{x,x}-\big(\overline{\lambda\ip{y,x} }+\lambda\ip{y,x}\big)+\vert\lambda\vert^2\ip{y,y} [Note 2]
              \eq\ip{x,x}-2\text{Re}(\lambda\ip{y,x})+\vert\lambda\vert^2\ip{y,y}
              \eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y } }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - by completing the square
              TODO: I think
              (without considering the -2\text{Re}...)
              • So \ip{x-\lambda y,x-\lambda y}\eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                • Note that \forall z\in X[\ip{z,z}\ge 0 holds, so:
                  • 0\le\ip{x-\lambda y,x-\lambda y}\eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                    • Or just 0\le\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                    • Define \theta\in[0,2\pi) such that \ip{y,x}\eq\vert\ip{y,x}\vert e^{j\theta} (a form of complex number)
                      • Define \lambda:\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta} and note that \vert\lambda\vert\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }
                        • this is fine to do as y\neq 0 so \ip{y,y}>0 so \sqrt{\ip{y,y} }>0 and the division in the fraction is defined
                        • we substitute this into our expression to obtain:
                          • 0\le\left(\sqrt{\ip{x,x} }-\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{y,y} }\right)^2-2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta}\ip{y,x}\right)+2\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                            \implies 0\le\underbrace{\left(\sqrt{\ip{x,x} }-\sqrt{\ip{x,x} }\right)^2}_{\eq 0}-2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta}\vert\ip{y,x}\vert e^{j\theta}\right)+2\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                            \implies 0\le -2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\vert\ip{y,x}\vert e^0\right)+2\ip{x,x} - but e^0\eq 1[Note 3] so there is no imaginary component of the thing in the \text{Re}
                            \implies 0\le 2\ip{x,x}-2\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }
                            \implies 2\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\le 2\ip{x,x} \implies\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\le \ip{x,x}
                            \implies\vert{\ip{y,x} }\vert\sqrt{\ip{x,x} }\le \ip{x,x}\sqrt{\ip{y,y} }
                            • \implies\vert\ip{y,x}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - almost as required
                              • Note that \vert\ip{x,y}\vert\eq\vert\overline{\ip{x,y} }\vert\eq\vert\ip{y,x}\vert [Note 4]
                                • So \vert\ip{x,y}\vert\eq\vert\ip{y,x}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
                                  • Thus \vert\ip{x,y}\vert\le \sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - as required
  • Since x,y\in X were arbitrary we have shown the claim holds for all.

This completes the proof.

References

  1. Jump up Warwick 2014 Lecture Notes - Functional Analysis - Richard Sharp

Notes

  1. Jump up Let a+bj\in\mathbb{C} , then:
    • (a+bj)\overline{(a+bj)}\eq(a+bj)(a-bj)
      \eq a^2-j^2b^j +j(ab-ab)
      \eq a^2+b^2\ (\ +0j\ )
      \eq\vert a+bj\vert^2 - as required
    • If a+bj is the complex representation of \lambda then we see \lambda\overline{\lambda}\eq\vert\lambda\vert^2
  2. Jump up Let a+bj\in\mathbb{C} , then:
    • (a+bj)+\overline{(a+bj)}\eq (a+bj)+(a-bj)\eq 2a
    • Thus if a+bj is the complex representation of \lambda\ip{y,x} then
      • \overline{\lambda\ip{y,x} }+\lambda\ip{y,x}\eq 2\text{Re}(\lambda\ip{y,x})
  3. Jump up From e^{-j\theta}e^{j\theta}\eq e^{j\theta-j\theta}\eq e^0
  4. Jump up As for a+bj\in\mathbb{C} we see:
    • \vert a+bj\vert:\eq \sqrt{a^2+b^2} and
    • \vert \overline{a+bj}\vert\eq\vert a-bj\vert\eq\vert a+(-b)j\vert:\eq \sqrt{a^2+(-b)^2}\eq\sqrt{a^2+b^2}\eq\vert a+bj\vert as required