Cauchy-Schwarz inequality for inner product spaces
From Maths
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Flesh out statement
\newcommand{\ip}[2][]{\langle {#2} \rangle {#1} }
Contents
[hide]Statement
Let \langle\cdot,\cdot\rangle:X\times X\rightarrow\mathbb{K} be an inner product so (X,\langle\cdot,\cdot\rangle) is an inner product space, then[1]:
- \forall x,y\in X\left[\vert\ip{x,y}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\right]
Proof
- Let x,y\in X be given
- We have two cases now, y\eq 0 and y\neq 0
- y\eq 0 case
- We now have two more cases, x\eq 0 and x\neq 0
- x\eq 0
- Now \ip{x,y}\eq 0, \ip{x,x}\eq 0 and \ip{y,y}\eq 0 so:
- \vert\ip{x,y}\vert\eq 0\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0\times 0\eq 0 is the case
- 0\le 0 obviously holds. We're done in this case
- \vert\ip{x,y}\vert\eq 0\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0\times 0\eq 0 is the case
- Now \ip{x,y}\eq 0, \ip{x,x}\eq 0 and \ip{y,y}\eq 0 so:
- x\neq 0
- Now \ip{x,y}:\eq\ip{x,0}\eq\overline{\ip{0,x} }\eq \overline{0\ip{z,x} } for any z\in X
- \eq 0\ip{x,z}\eq 0
- Now \vert\ip{x,y}\vert\eq 0 and \sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0\sqrt{\ip{x,x} }\eq 0 - as y\eq 0 \ip{y,y}\eq 0
- \vert\ip{x,y}\vert\eq 0\le \sqrt{\ip{x,x} }\sqrt{\ip{y,y} }\eq 0 gives us 0\le 0 which is obviously true (we have equality so we have \le)
- Now \ip{x,y}:\eq\ip{x,0}\eq\overline{\ip{0,x} }\eq \overline{0\ip{z,x} } for any z\in X
- x\eq 0
- We now have two more cases, x\eq 0 and x\neq 0
- y\neq 0 case
- Consider \lambda\in\mathbb{K} then:
- 0\le\ip{x-\lambda y,x-\lambda y} (as for an inner product \forall z\in X[\ip{z,z}\in\mathbb{R}\wedge\ip{z,z}\ge 0]
- Then \ip{x-\lambda y,x-\lambda y}\eq \ip{x,x-\lambda y}-\lambda\ip{y,x-\lambda y}
- \eq\overline{\ip{x-\lambda y,x} }-\lambda\big(\overline{\ip{x-\lambda y,y} }\big)
- \eq\overline{\ip{x,x}-\lambda\ip{y,x} }-\lambda\big(\overline{\ip{x,y} - \lambda\ip{y,y} }\big)
- \eq\ip{x,x}-\overline{\lambda\ip{y,x} }-\lambda\ip{y,x} + \lambda\overline{\lambda}\ip{y,y}
- \eq\ip{x,x}-\overline{\lambda\ip{y,x} }-\lambda\ip{y,x} + \vert\lambda\vert^2\ip{y,y} [Note 1]
- \eq\ip{x,x}-\big(\overline{\lambda\ip{y,x} }+\lambda\ip{y,x}\big)+\vert\lambda\vert^2\ip{y,y} [Note 2]
- \eq\ip{x,x}-2\text{Re}(\lambda\ip{y,x})+\vert\lambda\vert^2\ip{y,y}
- \eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y } }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - by completing the square TODO: I think(without considering the -2\text{Re}...)
- So \ip{x-\lambda y,x-\lambda y}\eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Note that \forall z\in X[\ip{z,z}\ge 0 holds, so:
- 0\le\ip{x-\lambda y,x-\lambda y}\eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Or just 0\le\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Define \theta\in[0,2\pi) such that \ip{y,x}\eq\vert\ip{y,x}\vert e^{j\theta} (a form of complex number)
- Define \lambda:\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta} and note that \vert\lambda\vert\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }
- this is fine to do as y\neq 0 so \ip{y,y}>0 so \sqrt{\ip{y,y} }>0 and the division in the fraction is defined
- we substitute this into our expression to obtain:
- 0\le\left(\sqrt{\ip{x,x} }-\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{y,y} }\right)^2-2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta}\ip{y,x}\right)+2\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- \implies 0\le\underbrace{\left(\sqrt{\ip{x,x} }-\sqrt{\ip{x,x} }\right)^2}_{\eq 0}-2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta}\vert\ip{y,x}\vert e^{j\theta}\right)+2\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- \implies 0\le -2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\vert\ip{y,x}\vert e^0\right)+2\ip{x,x} - but e^0\eq 1[Note 3] so there is no imaginary component of the thing in the \text{Re}
- \implies 0\le 2\ip{x,x}-2\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }
- \implies 2\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\le 2\ip{x,x} \implies\vert\ip{y,x}\vert\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\le \ip{x,x}
- \implies\vert{\ip{y,x} }\vert\sqrt{\ip{x,x} }\le \ip{x,x}\sqrt{\ip{y,y} }
- \implies\vert\ip{y,x}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - almost as required
- Note that \vert\ip{x,y}\vert\eq\vert\overline{\ip{x,y} }\vert\eq\vert\ip{y,x}\vert [Note 4]
- So \vert\ip{x,y}\vert\eq\vert\ip{y,x}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Thus \vert\ip{x,y}\vert\le \sqrt{\ip{x,x} }\sqrt{\ip{y,y} } - as required
- So \vert\ip{x,y}\vert\eq\vert\ip{y,x}\vert\le\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Note that \vert\ip{x,y}\vert\eq\vert\overline{\ip{x,y} }\vert\eq\vert\ip{y,x}\vert [Note 4]
- 0\le\left(\sqrt{\ip{x,x} }-\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{y,y} }\right)^2-2\text{Re}\left(\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta}\ip{y,x}\right)+2\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Define \lambda:\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } } e^{-j\theta} and note that \vert\lambda\vert\eq\frac{\sqrt{\ip{x,x} } }{\sqrt{\ip{y,y} } }
- 0\le\ip{x-\lambda y,x-\lambda y}\eq\left(\sqrt{\ip{x,x} }-\vert\lambda\vert\sqrt{\ip{y,y} }\right)^2-2\text{Re}(\lambda\ip{y,x})+2\vert\lambda\vert\sqrt{\ip{x,x} }\sqrt{\ip{y,y} }
- Note that \forall z\in X[\ip{z,z}\ge 0 holds, so:
- Then \ip{x-\lambda y,x-\lambda y}\eq \ip{x,x-\lambda y}-\lambda\ip{y,x-\lambda y}
- 0\le\ip{x-\lambda y,x-\lambda y} (as for an inner product \forall z\in X[\ip{z,z}\in\mathbb{R}\wedge\ip{z,z}\ge 0]
- Consider \lambda\in\mathbb{K} then:
- y\eq 0 case
- We have two cases now, y\eq 0 and y\neq 0
- Since x,y\in X were arbitrary we have shown the claim holds for all.
This completes the proof.
References
Notes
- Jump up ↑ Let a+bj\in\mathbb{C} , then:
- (a+bj)\overline{(a+bj)}\eq(a+bj)(a-bj)
- \eq a^2-j^2b^j +j(ab-ab)
- \eq a^2+b^2\ (\ +0j\ )
- \eq\vert a+bj\vert^2 - as required
- If a+bj is the complex representation of \lambda then we see \lambda\overline{\lambda}\eq\vert\lambda\vert^2
- (a+bj)\overline{(a+bj)}\eq(a+bj)(a-bj)
- Jump up ↑ Let a+bj\in\mathbb{C} , then:
- (a+bj)+\overline{(a+bj)}\eq (a+bj)+(a-bj)\eq 2a
- Thus if a+bj is the complex representation of \lambda\ip{y,x} then
- \overline{\lambda\ip{y,x} }+\lambda\ip{y,x}\eq 2\text{Re}(\lambda\ip{y,x})
- Jump up ↑ From e^{-j\theta}e^{j\theta}\eq e^{j\theta-j\theta}\eq e^0
- Jump up ↑ As for a+bj\in\mathbb{C} we see:
- \vert a+bj\vert:\eq \sqrt{a^2+b^2} and
- \vert \overline{a+bj}\vert\eq\vert a-bj\vert\eq\vert a+(-b)j\vert:\eq \sqrt{a^2+(-b)^2}\eq\sqrt{a^2+b^2}\eq\vert a+bj\vert as required
Categories:
- Stub pages
- XXX Todo
- Theorems
- Theorems, lemmas and corollaries
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Analysis Theorems
- Analysis Theorems, lemmas and corollaries
- Analysis
- Real Analysis Theorems
- Real Analysis Theorems, lemmas and corollaries
- Real Analysis
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology