Cantor's construction of the real numbers
From Maths
Stub grade: C
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Requires proof of claims and such
Contents
Definition
The set of real numbers, [ilmath]\mathbb{R} [/ilmath], is the quotient space, [ilmath]\mathscr{C}/\sim[/ilmath] where:[1]
- [ilmath]\mathscr{C} [/ilmath] - the set of all Cauchy sequences in [ilmath]\mathbb{Q} [/ilmath] - the quotients
- [ilmath]\sim[/ilmath] - the usual equivalence of Cauchy sequences
We further claim:
- that the familiar operations of addition, multiplication and division are well defined and
- by associating [ilmath]x\in\mathcal{Q} [/ilmath] with the sequence [ilmath] ({ x_n })_{ n = 1 }^{ \infty }\subseteq \mathbb{Q} [/ilmath] where [ilmath]\forall n\in\mathbb{N}[x_n:=x][/ilmath] we can embed [ilmath]\mathbb{Q} [/ilmath] in [ilmath]\mathbb{R}:=\mathscr{C}/\sim[/ilmath]
Proof of claims
(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).