(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a
to-do list for being expanded.
This page is a dire page and is in desperate need of an update.
The message is:
Look at it
Definition
A bimorphism is a morphism or arrow in a category [ilmath]\mathscr{C} [/ilmath][1]:
- [ilmath]\xymatrix{ A \ar[r]^f & B} [/ilmath]
That is
Warning:A bimorphism need not be an isomorphism, when all bimorphisms in [ilmath]\mathscr{C} [/ilmath] are isomorphisms however, we say that [ilmath]\mathscr{C} [/ilmath] is balanced
References
- ↑ An Introduction to Category Theory - Harold Simmons - 1st September 2010 edition
Category Theory
|
|
Overview of the concepts of Category Theory
|
|
Key objects
|
|
[ilmath]\xymatrix{ & \text{Arrow} \\ \text{Monic} \ar@{^{(}->}[ur] & & \text{Epic} \ar@{^{(}->}[ul] \\ & \text{Bimorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \\ {\begin{array}{c}\text{Section}\\ \text{(Split monic)} \end{array} } \ar@{^{(}->}[uu] & & {\begin{array}{c}\text{Retraction}\\ \text{(Split epic)} \end{array} } \ar@<-0.75ex>@{^{(}->}[uu] \\ & \text{Isomorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \ar@{^{(}->}[uu] }[/ilmath]
|
|
Typical morphism types (see diagram on right)
|
|
|
Key objects
|
|
|
Primitive constructs
|
|
|
Key constructs
|
|
|
Important examples
|
|
|
Trivial category examples
|
|
|
Common categories
|
|
|