Bilinear form
From Maths
This is a specialisation of a Bilinear map and a generalisation of Inner product
Contents
Definition
Let [ilmath](V,F)[/ilmath] be a vector space over a field [ilmath]F[/ilmath], a mapping:
- [math]\langle\cdot,\cdot\rangle:V\times V\rightarrow F[/math]
is a bilinear form[1] if:
- It is bilinear, that is to say:
- It is linear in each coordinate, which is to say:
- [math]\forall x,y,z\in V\ \forall\alpha,\beta\in F[\langle\alpha x+\beta y,z\rangle=\alpha\langle x,z\rangle+\beta\langle y,z\rangle][/math] and
- [math]\forall x,y,z\in V\ \forall\alpha,\beta\in F[\langle x,\alpha y+\beta z\rangle=\alpha\langle x,y\rangle+\beta\langle x,z\rangle][/math]
- It is linear in each coordinate, which is to say:
Properties
We say the bilinear form is property
when it has any of the following properties:
Property | Definition | Comment |
---|---|---|
Symmetric[1] | [math]\forall x,y\in V[\langle x,y\rangle=\langle y,x\rangle][/math] | |
Skew-symmetric[1] or Antisymmetric | [math]\forall x,y\in V[\langle x,y\rangle=-\langle y,x\rangle][/math] | I use antisymmetric |
Alternate[1] or Alternating | [math]\forall x\in V[\langle x,x\rangle=0][/math] | I use alternating. [ilmath]0[/ilmath] denotes the additive identity of [ilmath]F[/ilmath] |
See also
TODO: Unite with inner product over real or complex field. Page 260 in Roman and page 206 are what is needed