Cauchy-Schwarz inequality for inner product spaces
From Maths
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Flesh out statement
Contents
[hide]Statement
Let ⟨⋅,⋅⟩:X×X→K be an inner product so (X,⟨⋅,⋅⟩) is an inner product space, then[1]:
- ∀x,y∈X[|⟨x,y⟩|≤√⟨x,x⟩√⟨y,y⟩]
Proof
- Let x,y∈X be given
- We have two cases now, y=0 and y≠0
- y=0 case
- We now have two more cases, x=0 and x≠0
- x=0
- Now ⟨x,y⟩=0, ⟨x,x⟩=0 and ⟨y,y⟩=0 so:
- |⟨x,y⟩|=0≤√⟨x,x⟩√⟨y,y⟩=0×0=0 is the case
- 0≤0 obviously holds. We're done in this case
- |⟨x,y⟩|=0≤√⟨x,x⟩√⟨y,y⟩=0×0=0 is the case
- Now ⟨x,y⟩=0, ⟨x,x⟩=0 and ⟨y,y⟩=0 so:
- x≠0
- Now ⟨x,y⟩:=⟨x,0⟩=¯⟨0,x⟩=¯0⟨z,x⟩ for any z∈X
- =0⟨x,z⟩=0
- Now |⟨x,y⟩|=0 and √⟨x,x⟩√⟨y,y⟩=0√⟨x,x⟩=0 - as y=0 ⟨y,y⟩=0
- |⟨x,y⟩|=0≤√⟨x,x⟩√⟨y,y⟩=0 gives us 0≤0 which is obviously true (we have equality so we have ≤)
- Now ⟨x,y⟩:=⟨x,0⟩=¯⟨0,x⟩=¯0⟨z,x⟩ for any z∈X
- x=0
- We now have two more cases, x=0 and x≠0
- y≠0 case
- Consider λ∈K then:
- 0≤⟨x−λy,x−λy⟩ (as for an inner product ∀z∈X[⟨z,z⟩∈R∧⟨z,z⟩≥0]
- Then ⟨x−λy,x−λy⟩=⟨x,x−λy⟩−λ⟨y,x−λy⟩
- =¯⟨x−λy,x⟩−λ(¯⟨x−λy,y⟩)
- =¯⟨x,x⟩−λ⟨y,x⟩−λ(¯⟨x,y⟩−λ⟨y,y⟩)
- =⟨x,x⟩−¯λ⟨y,x⟩−λ⟨y,x⟩+λ¯λ⟨y,y⟩
- =⟨x,x⟩−¯λ⟨y,x⟩−λ⟨y,x⟩+|λ|2⟨y,y⟩[Note 1]
- =⟨x,x⟩−(¯λ⟨y,x⟩+λ⟨y,x⟩)+|λ|2⟨y,y⟩[Note 2]
- =⟨x,x⟩−2Re(λ⟨y,x⟩)+|λ|2⟨y,y⟩
- =(√⟨x,x⟩−|λ|√⟨y,y⟩)2−2Re(λ⟨y,x⟩)+2|λ|√⟨x,x⟩√⟨y,y⟩ - by completing the square TODO: I think(without considering the −2Re...)
- So ⟨x−λy,x−λy⟩=(√⟨x,x⟩−|λ|√⟨y,y⟩)2−2Re(λ⟨y,x⟩)+2|λ|√⟨x,x⟩√⟨y,y⟩
- Note that ∀z∈X[⟨z,z⟩≥0 holds, so:
- 0≤⟨x−λy,x−λy⟩=(√⟨x,x⟩−|λ|√⟨y,y⟩)2−2Re(λ⟨y,x⟩)+2|λ|√⟨x,x⟩√⟨y,y⟩
- Or just 0≤(√⟨x,x⟩−|λ|√⟨y,y⟩)2−2Re(λ⟨y,x⟩)+2|λ|√⟨x,x⟩√⟨y,y⟩
- Define θ∈[0,2π) such that ⟨y,x⟩=|⟨y,x⟩|ejθ (a form of complex number)
- Define λ:=√⟨x,x⟩√⟨y,y⟩e−jθand note that |λ|=√⟨x,x⟩√⟨y,y⟩
- this is fine to do as y≠0 so ⟨y,y⟩>0 so √⟨y,y⟩>0 and the division in the fraction is defined
- we substitute this into our expression to obtain:
- 0≤(√⟨x,x⟩−√⟨x,x⟩√⟨y,y⟩√⟨y,y⟩)2−2Re(√⟨x,x⟩√⟨y,y⟩e−jθ⟨y,x⟩)+2√⟨x,x⟩√⟨y,y⟩√⟨x,x⟩√⟨y,y⟩
- ⟹0≤(√⟨x,x⟩−√⟨x,x⟩)2⏟=0−2Re(√⟨x,x⟩√⟨y,y⟩e−jθ|⟨y,x⟩|ejθ)+2√⟨x,x⟩√⟨y,y⟩√⟨x,x⟩√⟨y,y⟩
- ⟹0≤−2Re(√⟨x,x⟩√⟨y,y⟩|⟨y,x⟩|e0)+2⟨x,x⟩- but e0=1[Note 3] so there is no imaginary component of the thing in the Re
- ⟹0≤2⟨x,x⟩−2|⟨y,x⟩|√⟨x,x⟩√⟨y,y⟩
- ⟹2|⟨y,x⟩|√⟨x,x⟩√⟨y,y⟩≤2⟨x,x⟩⟹|⟨y,x⟩|√⟨x,x⟩√⟨y,y⟩≤⟨x,x⟩
- ⟹|⟨y,x⟩|√⟨x,x⟩≤⟨x,x⟩√⟨y,y⟩
- ⟹|⟨y,x⟩|≤√⟨x,x⟩√⟨y,y⟩ - almost as required
- Note that |⟨x,y⟩|=|¯⟨x,y⟩|=|⟨y,x⟩|[Note 4]
- So |⟨x,y⟩|=|⟨y,x⟩|≤√⟨x,x⟩√⟨y,y⟩
- Thus |⟨x,y⟩|≤√⟨x,x⟩√⟨y,y⟩ - as required
- So |⟨x,y⟩|=|⟨y,x⟩|≤√⟨x,x⟩√⟨y,y⟩
- Note that |⟨x,y⟩|=|¯⟨x,y⟩|=|⟨y,x⟩|[Note 4]
- ⟹0≤(√⟨x,x⟩−√⟨x,x⟩)2⏟=0−2Re(√⟨x,x⟩√⟨y,y⟩e−jθ|⟨y,x⟩|ejθ)+2√⟨x,x⟩√⟨y,y⟩√⟨x,x⟩√⟨y,y⟩
- 0≤(√⟨x,x⟩−√⟨x,x⟩√⟨y,y⟩√⟨y,y⟩)2−2Re(√⟨x,x⟩√⟨y,y⟩e−jθ⟨y,x⟩)+2√⟨x,x⟩√⟨y,y⟩√⟨x,x⟩√⟨y,y⟩
- Define λ:=√⟨x,x⟩√⟨y,y⟩e−jθ
- 0≤⟨x−λy,x−λy⟩=(√⟨x,x⟩−|λ|√⟨y,y⟩)2−2Re(λ⟨y,x⟩)+2|λ|√⟨x,x⟩√⟨y,y⟩
- Note that ∀z∈X[⟨z,z⟩≥0 holds, so:
- Then ⟨x−λy,x−λy⟩=⟨x,x−λy⟩−λ⟨y,x−λy⟩
- 0≤⟨x−λy,x−λy⟩ (as for an inner product ∀z∈X[⟨z,z⟩∈R∧⟨z,z⟩≥0]
- Consider λ∈K then:
- y=0 case
- We have two cases now, y=0 and y≠0
- Since x,y∈X were arbitrary we have shown the claim holds for all.
This completes the proof.
References
Notes
- Jump up ↑ Let a+bj∈C, then:
- (a+bj)¯(a+bj)=(a+bj)(a−bj)
- =a2−j2bj+j(ab−ab)
- =a2+b2 ( +0j )
- =|a+bj|2 - as required
- If a+bj is the complex representation of λ then we see λ¯λ=|λ|2
- (a+bj)¯(a+bj)=(a+bj)(a−bj)
- Jump up ↑ Let a+bj∈C, then:
- (a+bj)+¯(a+bj)=(a+bj)+(a−bj)=2a
- Thus if a+bj is the complex representation of λ⟨y,x⟩ then
- ¯λ⟨y,x⟩+λ⟨y,x⟩=2Re(λ⟨y,x⟩)
- Jump up ↑ From e−jθejθ=ejθ−jθ=e0
- Jump up ↑ As for a+bj∈C we see:
- |a+bj|:=√a2+b2 and
- |¯a+bj|=|a−bj|=|a+(−b)j|:=√a2+(−b)2=√a2+b2=|a+bj| as required
Categories:
- Stub pages
- XXX Todo
- Theorems
- Theorems, lemmas and corollaries
- Functional Analysis Theorems
- Functional Analysis Theorems, lemmas and corollaries
- Functional Analysis
- Analysis Theorems
- Analysis Theorems, lemmas and corollaries
- Analysis
- Real Analysis Theorems
- Real Analysis Theorems, lemmas and corollaries
- Real Analysis
- Topology Theorems
- Topology Theorems, lemmas and corollaries
- Topology