Template:Category theory navbox
From Maths
Revision as of 14:43, 6 February 2016 by
Alec
(
Talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to:
navigation
,
search
v
•
d
•
e
Category Theory
Overview of the concepts of
Category Theory
Key objects
Category
,
Functor
(
Covariant
,
Contravariant
),
Subcategory
[ilmath]\xymatrix{ & \text{Arrow} \\ \text{Monic} \ar@{^{(}->}[ur] & & \text{Epic} \ar@{^{(}->}[ul] \\ & \text{Bimorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \\ {\begin{array}{c}\text{Section}\\ \text{(Split monic)} \end{array} } \ar@{^{(}->}[uu] & & {\begin{array}{c}\text{Retraction}\\ \text{(Split epic)} \end{array} } \ar@<-0.75ex>@{^{(}->}[uu] \\ & \text{Isomorphism} \ar@{^{(}->}[ur] \ar@<-0.5ex>@{^{(}->}[ul] \ar@{^{(}->}[uu] }[/ilmath]
Typical
morphism
types
(see diagram on right)
Arrow
(
AKA
:
Morphism
),
Monic
,
Epic
,
Bimorphism
,
Split monic
(
AKA
:
Section
),
Split epic
(
AKA
:
Retraction
),
Isomorphism
Key objects
[ilmath]\text{Initial} [/ilmath]
,
[ilmath]\text{Final} [/ilmath]
Key constructs
Product
/
Coproduct
,
Limit
/
Colimit
,
Equaliser
/
Coequaliser
Important examples
Demonstrating why category arrows are best thought of as arrows and not functions
Trivial category examples
Category induced by a monoid
,
Category induced by a poset
Common categories
SET
,
Pfn
,
GROUP
TODO: fill this out
Categories
:
Navboxes
Category Theory
Todo
Navigation menu
Views
Template
Discussion
View source
History
Personal tools
Log in
Navigation
Main page
Recent changes
Random page
Help
Search
Tools
What links here
Related changes
Special pages
Permanent link
Page information