Normal subgroup
From Maths
Definition
Let [ilmath](G,\times)[/ilmath] be a group and [ilmath]H[/ilmath] a subgroup of [ilmath]G[/ilmath], we say [ilmath]H[/ilmath] is a normal subgroup[1] of [ilmath]G[/ilmath] if:
- [math]\forall x\in G[xH=Hx][/math] where the [ilmath]xH[/ilmath] and [ilmath]Hx[/ilmath] are left and right cosets
- This is the sameas saying: [ilmath]\forall x\in G[xHx^{-1}=H][/ilmath]
According to Serge Lang[1] this is equivalent (that is say if and only if or [ilmath]\iff[/ilmath])
- [ilmath]H[/ilmath] is the kerel of some homomorphism of [ilmath]G[/ilmath] into some other group
Proof of claims
Claim 1: [math]\forall x\in G[xH=Hx]\iff\forall x\in G[xHx^{-1}=H][/math]
Proof of: [math]\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H][/math]
- Suppose that for whatever [ilmath]g\in G[/ilmath] we have that [ilmath]gH=Hg[/ilmath] - we wish to show that for any [ilmath]x\in G[xHx^{-1}=H][/ilmath]
- Let [ilmath]x\in G[/ilmath] be given.
- Recall that [math]X=Y\iff[X\subseteq Y\wedge X\supseteq Y][/math] so we need to show:
- [math]xHx^{-1}\subseteq H[/math]
- By the implies-subset relation this is the same as [math]y\in xHx^{-1}\implies y\in H[/math]
- [math]xHx^{-1}\supseteq H[/math]
- By the implies-subset relation this is the same as [math]y\in H\implies y\in xHx^{-1}[/math]
- [math]xHx^{-1}\subseteq H[/math]
- Let us show 1:
- Suppose [math]y\in xHx^{-1}[/math] we wish to show [math]\implies y\in H[/math] (that is [math]xHx^{-1}\subseteq H[/math])
- [math]y\in xHx^{-1}\implies \exists h_1\in H:y=xh_1x^{-1}[/math]
- [math]\implies yx=xh_1[/math] - note that [ilmath]xh_1\in xH[/ilmath]
- By hypothesis, [math]\forall g\in G[gH=Hg][/math]
- So, as [ilmath]yx=xh_1\in xH[/ilmath] we see [ilmath]yx\in Hx[/ilmath]
- This means [math]\exists h_2\in H[/math] such that [math]yx=h_2x[/math]
- Using the cancellation laws for groups we see that
- [math]y=h_2[/math] as [ilmath]h_2\in H[/ilmath] we must have [ilmath]y\in H[/ilmath]
- We have now shown that [math][y\in xHx^{-1}\implies y\in H]\iff[xHx^{-1}\subseteq H][/math]
- Suppose [math]y\in xHx^{-1}[/math] we wish to show [math]\implies y\in H[/math] (that is [math]xHx^{-1}\subseteq H[/math])
- Now to show 2:
- Suppose that [ilmath]y\in H[/ilmath] we wish to show that [math]\implies y\in xHx^{-1}[/math] (that is [math]H\subseteq xHx^{-1}[/math])
- Note that [ilmath]yx\in Hx[/ilmath] by definition of [ilmath]Hx[/ilmath]
- By hypothesis [ilmath]Hx=xH[/ilmath] so
- we see that [ilmath]yx\in xH[/ilmath]
- this means [ilmath]\exists h_1\in H[yx=xh_1][/ilmath]
- and this means [ilmath]y=xh_1x^{-1}[/ilmath]
- such a [ilmath]h_1[/ilmath] existing is the very definition of [ilmath]xh_1x^{-1}\in xHx^{-1} [/ilmath]
- thus [ilmath]y\in xHx^{-1} [/ilmath]
- Note that [ilmath]yx\in Hx[/ilmath] by definition of [ilmath]Hx[/ilmath]
- We have now shown that [math][y\in H\implies y\in xHx^{-1}]\implies[H\subseteq xHx^{-1}][/math]
- Suppose that [ilmath]y\in H[/ilmath] we wish to show that [math]\implies y\in xHx^{-1}[/math] (that is [math]H\subseteq xHx^{-1}[/math])
- Combining this we hve shown that [ilmath]\forall x\in G[xH=Hx]\implies\forall x\in G[xHx^{-1}=H][/ilmath]
Next:
Proof of: [math]\forall x\in G[xHx^{-1}=H]\implies\forall x\in G[xH=Hx][/math]
TODO: Simple proof