Group

From Maths
Revision as of 10:01, 11 March 2015 by Alec (Talk | contribs)

Jump to: navigation, search

Definition

A group is a set [ilmath]G[/ilmath] and an operation [math]*:G\times G\rightarrow G[/math], denoted [math](G,*:G\times G\rightarrow G)[/math] but mathematicians are lazy so we just write [math](G,*)[/math]

Such that the following axioms hold:

Axioms

Words Formal
[math]\forall a,b,c\in G:[(a*b)*c=a*(b*c)][/math] [ilmath]*[/ilmath] is associative, because of this we may write [math]a*b*c[/math] unambiguously.
[math]\exists e\in G\forall g\in G[e*g=g*e=g][/math] [ilmath]*[/ilmath] has an identity element
[math]\forall g\in G\exists x\in G[xg=gx=e][/math] All elements of [ilmath]G[/ilmath] have an inverse element under [ilmath]*[/ilmath], that is

Important theorems

Identity is unique

Proof:


Assume there are two identity elements, [ilmath]e[/ilmath] and [ilmath]e`[/ilmath] with [math]e\ne e`[/math].

That is both:

  • [math]\forall g\in G[e*g=g*e=g][/math]
  • [math]\forall g\in G[e`*g=g*e`=g][/math]

But then [math]ee`=e[/math] and also [math]ee`=e`<math> thus we see <math>e`=e[/math] contradicting that they were different.