Difference between revisions of "Every lingering sequence has a convergent subsequence/Statement"

From Maths
Jump to: navigation, search
(Created page with "==Statement== <onlyinclude> Let {{M|(X,d)}} be a metric space, then{{rITTGG}}: * {{MM|1=\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\...")
 
m (Typo)
 
Line 3: Line 3:
 
Let {{M|(X,d)}} be a [[metric space]], then{{rITTGG}}:
 
Let {{M|(X,d)}} be a [[metric space]], then{{rITTGG}}:
 
* {{MM|1=\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0]\right)\implies\left(\exists(k_n)_{n=1}^\infty\subseteq\mathbb{N}\left[(\forall n\in\mathbb{N}[k_n<k_{n+1}])\implies\left(\exists x'\in X\left[\lim_{n\rightarrow\infty}(x_{k_n})=x'\right]\right)\right]\right)\right]}}
 
* {{MM|1=\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0]\right)\implies\left(\exists(k_n)_{n=1}^\infty\subseteq\mathbb{N}\left[(\forall n\in\mathbb{N}[k_n<k_{n+1}])\implies\left(\exists x'\in X\left[\lim_{n\rightarrow\infty}(x_{k_n})=x'\right]\right)\right]\right)\right]}}
This is just a verbose way of expression the statement that:
+
This is just a verbose way of expressing the statement that:
 
* Given a sequence {{M|1=(x_n)_{n=1}^\infty\subseteq X}} if it is a [[lingering sequence]] then it has a [[subsequence]] that [[convergence (sequence)|converges]]
 
* Given a sequence {{M|1=(x_n)_{n=1}^\infty\subseteq X}} if it is a [[lingering sequence]] then it has a [[subsequence]] that [[convergence (sequence)|converges]]
 
</onlyinclude>
 
</onlyinclude>
 
==References==
 
==References==
 
<references/>
 
<references/>

Latest revision as of 19:57, 9 November 2016

Statement

Let [ilmath](X,d)[/ilmath] be a metric space, then[1]:

  • [math]\forall(x_n)_{n=1}^\infty\subseteq X\left[\left(\exists x\in X\ \forall\epsilon>0[\vert B_\epsilon(x)\cap(x_n)_{n=1}^\infty\vert=\aleph_0]\right)\implies\left(\exists(k_n)_{n=1}^\infty\subseteq\mathbb{N}\left[(\forall n\in\mathbb{N}[k_n<k_{n+1}])\implies\left(\exists x'\in X\left[\lim_{n\rightarrow\infty}(x_{k_n})=x'\right]\right)\right]\right)\right][/math]

This is just a verbose way of expressing the statement that:

References

  1. Introduction to Topology - Theodore W. Gamelin & Robert Everist Greene