Difference between revisions of "The real numbers"
From Maths
m (Alec moved page The real numbers to Real line: Changing name) |
m (Fixed title, fixed stupidly large info box, fixed infobox placement, added example for later use) |
||
Line 1: | Line 1: | ||
− | + | {{Stub page|grade=C|msg=Once cleaned up and fleshed out, demote to D | |
− | <div>{{Infobox|title=The real numbers|above=<span style="font-size:9em;">{{M|\mathbb{R} }}</span>}}</div>__TOC__ | + | * Be sure to include [[Example:The real line with the finite complement topology is not Hausdorff]]}} |
+ | <div style="float:right;margin:0px;margin-left:0.2em;">{{Infobox|style=max-width:30ex;|title=The real numbers|above=<div style="max-width:25em;"><span style="font-size:9em;">{{M|\mathbb{R} }}</span></div>}}</div>__TOC__ | ||
==Definition== | ==Definition== | ||
===[[Cantor's construction of the real numbers]]=== | ===[[Cantor's construction of the real numbers]]=== |
Revision as of 09:36, 30 December 2016
Stub grade: C
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Once cleaned up and fleshed out, demote to D
- Be sure to include Example:The real line with the finite complement topology is not Hausdorff
The real numbers | |
[ilmath]\mathbb{R} [/ilmath]
|
Contents
Definition
Cantor's construction of the real numbers
The set of real numbers, [ilmath]\mathbb{R} [/ilmath], is the quotient space, [ilmath]\mathscr{C}/\sim[/ilmath] where:[1]
- [ilmath]\mathscr{C} [/ilmath] - the set of all Cauchy sequences in [ilmath]\mathbb{Q} [/ilmath] - the quotients
- [ilmath]\sim[/ilmath] - the usual equivalence of Cauchy sequences
We further claim:
- that the familiar operations of addition, multiplication and division are well defined and
- by associating [ilmath]x\in\mathcal{Q} [/ilmath] with the sequence [ilmath] ({ x_n })_{ n = 1 }^{ \infty }\subseteq \mathbb{Q} [/ilmath] where [ilmath]\forall n\in\mathbb{N}[x_n:=x][/ilmath] we can embed [ilmath]\mathbb{Q} [/ilmath] in [ilmath]\mathbb{R}:=\mathscr{C}/\sim[/ilmath]
Axiomatic construction of the real numbers
Axiomatic construction of the real numbers/Definition
[ilmath]\mathbb{R} [/ilmath] is an example of:
- Vector space
- Field ([ilmath]\implies\ \ldots\implies[/ilmath] ring)
- Complete metric space ([ilmath]\implies[/ilmath] topological space)
- With the metric of absolute value
TODO: Flesh out
Properties
- The axiom of completeness - a badly named property that isn't really an axiom.
If [ilmath]S\subseteq\mathbb{R} [/ilmath] is a non-empty set of real numbers that has an upper bound then[2]:
- [ilmath]\text{Sup}(S)[/ilmath] (the supremum of [ilmath]S[/ilmath]) exists.