Difference between revisions of "Template:Category theory navbox"
From Maths
m |
m |
||
(11 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
|name=Category theory navbox | |name=Category theory navbox | ||
|style= border: 1px solid #aaa;width: 100%;margin: auto;clear: both;font-size: 88%;text-align: center;padding: 1px; background: #fdfdfd; | |style= border: 1px solid #aaa;width: 100%;margin: auto;clear: both;font-size: 88%;text-align: center;padding: 1px; background: #fdfdfd; | ||
+ | |state=plain | ||
|groupstyle= white-space: nowrap; text-align: right; font-weight: bold; padding-left: 1em; padding-right: 1em;background: #ddddff; | |groupstyle= white-space: nowrap; text-align: right; font-weight: bold; padding-left: 1em; padding-right: 1em;background: #ddddff; | ||
|liststyle=border-color: #fdfdfd; | |liststyle=border-color: #fdfdfd; | ||
Line 9: | Line 10: | ||
|abovestyle=background: #ddddff; | |abovestyle=background: #ddddff; | ||
|title=Category Theory | |title=Category Theory | ||
− | |above=Overview of the concepts of [[Category | + | |above=Overview of the concepts of [[Category Theory (subject)|Category Theory]] |
− | |image=< | + | |image=<div style="font-size:0.65em;overflow:hidden;">{{:Types of category arrows/Diagram}}</div> |
|group1=Key objects | |group1=Key objects | ||
|list1=[[Category]], [[Functor]] ([[Covariant functor|Covariant]], [[Contravariant functor|Contravariant]]), [[Subcategory]] | |list1=[[Category]], [[Functor]] ([[Covariant functor|Covariant]], [[Contravariant functor|Contravariant]]), [[Subcategory]] | ||
− | |group2= | + | |group2=[[Types of category arrows|Typical morphism types]]<br/><span style="font-weight:normal;">(see diagram on right)</span> |
− | |list2=[[Arrow]] ({{AKA}}: [[Morphism]]), [[Monic]], [[Epic]], [[Bimorphism]], [[ | + | |list2=[[Arrow]] ({{AKA}}: [[Morphism]]), [[Monic]], [[Epic]], [[Bimorphism]], [[section (category theory)|Section]] ({{AKA}}: [[Split monic]]), [[retraction (category theory)|Retraction]] ({{AKA}}: [[Split epic]]), [[Isomorphism (category theory)|Isomorphism]] |
|group3=Key objects | |group3=Key objects | ||
− | |list3=[[Initial (category theory)|{{M|\text{Initial} }}]], [[Final (category theory)|{{M|\text{Final} }}]] | + | |list3=[[Initial (category theory)|{{M|\text{Initial} }}]], [[Final (category theory)|{{M|\text{Final} }}]] ([[initial and final compared (category theory)|compared]]) |
− | |group4= | + | |group4=Primitive constructs |
− | |list4=[[product (category theory)|Product]] / [[coproduct (category theory)|Coproduct]], [[Limit (category theory)|Limit]] / [[Colimit (category theory)|Colimit]], [[Equaliser (category theory)|Equaliser]] / [[Coequaliser (category theory)|Coequaliser]] | + | |list4=[[Wedge (category theory)|Wedge]] ({{AKA}} [[Cone (category theory)|Cone]] & [[cocone (category theory)|Cocone]]) |
− | | | + | |group5=Key constructs |
− | | | + | |list5=[[product (category theory)|Product]] / [[coproduct (category theory)|Coproduct]] ([[Product and coproduct compared]]), [[Limit (category theory)|Limit]] / [[Colimit (category theory)|Colimit]], [[Equaliser (category theory)|Equaliser]] / [[Coequaliser (category theory)|Coequaliser]] |
+ | |group6=Important examples | ||
+ | |list6=<nowiki/> | ||
* [[Demonstrating why category arrows are best thought of as arrows and not functions]] | * [[Demonstrating why category arrows are best thought of as arrows and not functions]] | ||
− | | | + | |group7=Trivial category examples |
− | | | + | |list7=[[Category induced by a monoid]], [[Category induced by a poset]] |
− | | | + | |group8=Common categories |
− | | | + | |list8=[[SET (category)|{{M|\mathrm{SET} }}]], [[Pfn (category)|{{M|\mathrm{Pfn} }}]], [[GROUP (category)|{{M|\mathrm{GROUP} }}]] |
}}<noinclude> | }}<noinclude> | ||
[[Category:Navboxes]] | [[Category:Navboxes]] | ||
[[Category:Category Theory]] | [[Category:Category Theory]] | ||
− | {{ | + | {{ProjectTodo|Navbox project|fill this out}} |
</noinclude> | </noinclude> |
Latest revision as of 20:26, 15 November 2016
|
Todo (Navbox project): fill this out