Integral of a positive function (measure theory)

From Maths
Revision as of 12:59, 12 March 2016 by Alec (Talk | contribs) (Created page with "==Definition== {{:Integral of a positive function (measure theory)/Definition}} There are alternate notations, that make the ''variable of integration'' more clear, they are:...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Definition

Let [ilmath](X,\mathcal{A},\mu)[/ilmath] be a measure space, the [ilmath]\mu[/ilmath]-integral of a positive numerical function, [ilmath]f\in\mathcal{M}^+_{\bar{\mathbb{R} } }(\mathcal{A}) [/ilmath][Note 1][Note 2] is[1]:

  • [math]\int f\mathrm{d}\mu:=\text{Sup}\left\{I_\mu(g)\ \Big\vert\ g\le f, g\in\mathcal{E}^+(\mathcal{A})\right\}[/math][Note 3]

Recall that:

There are alternate notations, that make the variable of integration more clear, they are:

  • [ilmath]\int f(x)\mu(\mathrm{d}x)[/ilmath][1]
  • [ilmath]\int f(x)\mathrm{d}\mu(x)[/ilmath][1]

Immediate results

  • [math]\forall f\in\mathcal{E}^+(\mathcal{A})\left[\int f\mathrm{d}\mu=I_\mu(f)\right][/math] - Integrating a simple function works


Note that without this lemma we cannot be sure the integral of simple functions is well defined! Which would be really really bad if it weren't true.

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Page 70 in[1]

Notes

  1. So [ilmath]f:X\rightarrow\bar{\mathbb{R} }^+[/ilmath]
  2. Notice that [ilmath]f[/ilmath] is [ilmath]\mathcal{A}/\bar{\mathcal{B} } [/ilmath]-measurable by definition, as [ilmath]\mathcal{M}_\mathcal{Z}(\mathcal{A})[/ilmath] denotes all the measurable functions that are [ilmath]\mathcal{A}/\mathcal{Z} [/ilmath]-measurable, we just use the [ilmath]+[/ilmath] as a slight abuse of notation to denote all the positive ones (with respect to the standard order on [ilmath]\bar{\mathbb{R} } [/ilmath] - the extended reals)
  3. The [ilmath]g\le f[/ilmath] is an abuse of notation for saying that [ilmath]g[/ilmath] is everywhere less than [ilmath]f[/ilmath], we could have written:
    • [math]\int f\mathrm{d}\mu=\text{Sup}\left\{I_\mu(g)\ \Big\vert\ g\le f, g\in\mathcal{E}^+\right\}=\text{Sup}\left\{I_\mu(g)\ \Big\vert\ g\in\left\{h\in\mathcal{E}^+(\mathcal{A})\ \big\vert\ \forall x\in X\left(h(x)\le f(x)\right)\right\}\right\}[/math] instead.
    Inline with: Notation for dealing with (extended) real-valued measurable maps

References

  1. 1.0 1.1 1.2 1.3 Measures, Integrals and Martingales - René L. Schilling