Equivalence of Cauchy sequences/Proof

From Maths
< Equivalence of Cauchy sequences
Revision as of 20:21, 29 February 2016 by Alec (Talk | contribs) (Created page with "<noinclude> ==Statement== {{:Equivalence of Cauchy sequences/Definition}} And that this indeed actually defines an equivalence relation ==Proof== </noinclude> '''Reflexivi...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Statement

Given two Cauchy sequences, [ilmath](a_n)_{n=1}^\infty[/ilmath] and [ilmath](b_n)_{n=1}^\infty[/ilmath] in a metric space [ilmath](X,d)[/ilmath] we define them as equivalent if[1]:

  • [math]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/math]

And that this indeed actually defines an equivalence relation

Proof

Reflexivity

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).

Transitivity

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).

Symmetry

(Unknown grade)
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).

References

  1. Analysis - Part 1: Elements - Krzysztof Maurin