Difference between revisions of "Compactness"

From Maths
Jump to: navigation, search
m
m
Line 16: Line 16:
 
Then the collection <math>\{A_\alpha\cap Y|\alpha\in I\}</math> is a covering of <math>Y</math> by sets open in <math>Y</math> (by definition of [[Subspace topology|being a subspace]])
 
Then the collection <math>\{A_\alpha\cap Y|\alpha\in I\}</math> is a covering of <math>Y</math> by sets open in <math>Y</math> (by definition of [[Subspace topology|being a subspace]])
  
By hypothesis <math>Y</math> is compact, hence a finite subcollection <math>\{A_i\cap Y\}^n_{i=1}</math> covers <math>Y</math>
+
By hypothesis <math>Y</math> is compact, hence a finite subcollection <math>\{A_{\alpha_i}\cap Y\}^n_{i=1}</math> covers <math>Y</math> '''(as to be compact ''every'' open cover must have a finite subcover)'''
  
Then <math>\{A_i\}^n_{i=1}</math> is a subcollection of <math>\mathcal{A}</math> that covers <math>Y</math>.  
+
Then <math>\{A_{\alpha_i}\}^n_{i=1}</math> is a subcollection of <math>\mathcal{A}</math> that covers <math>Y</math>.
====<math>\impliedby</math>====
+
 
 +
=====Details=====
 +
As [[The intersection of sets is a subset of each set]] and <math>\cup^n_{i=1}(A_{\alpha_i}\cap Y)=Y</math> we see <br />
 +
<math>x\in\cup^n_{i=1}(A_{\alpha_i}\cap Y)\implies\exists k\in\mathbb{N}\text{ with }1\le k\le n:x\in A_{\alpha_k}\cap Y\implies x\in A_{\alpha_k}\implies x\in\cup^n_{i=1}A_{\alpha_i}</math><br />
 +
The important part being <math>x\in\cup^n_{i=1}(A_{\alpha_i}\cap Y)\implies x\in\cup^n_{i=1}A_{\alpha_i}</math><br />
 +
then by the [[Implies and subset relation|implies and subset relation]] we have <math>Y=\cup^n_{i=1}(A_{\alpha_i}\cap Y)\subset\cup^n_{i=1}A_{\alpha_i}</math> and conclude <math>Y\subset\cup^n_{i=1}A_{\alpha_i}</math>
 +
 
 +
 
 +
Lastly, as <math>\mathcal{A}</math> was a covering <math>\cup_{\alpha\in I}A_\alpha=Y</math>.
 +
 
 +
It is clear that <math>x\in\cup^n_{i=1}A_{\alpha_i}\implies x\in\cup_{\alpha\in I}A_\alpha</math> so again  [[Implies and subset relation|implies and subset relation]] we have:<br />
 +
<math>\cup^n_{i=1}A_{\alpha_i}\subset\cup_{\alpha\in I}A_\alpha=Y</math> thus concluding <math>\cup^n_{i=1}A_{\alpha_i}\subset Y</math>
 +
 
 +
Combining <math>Y\subset\cup^n_{i=1}A_{\alpha_i}</math> and <math>\cup^n_{i=1}A_{\alpha_i}\subset Y</math> we see <math>\cup^n_{i=1}A_{\alpha_i}=Y</math>
 +
 
 +
Thus <math>\{A_{\alpha_i}\}^n_{i=1}</math> is a finite covering of <math>Y</math> consisting of '''open''' sets from <math>X</math>
 +
====<math>\impliedby</math>====  
  
  
 
{{Definition|Topology}}
 
{{Definition|Topology}}

Revision as of 18:07, 13 February 2015

Definition

A topological space is compact if every open cover (often denoted [math]\mathcal{A}[/math]) of [math]X[/math] contains a finite sub-collection that also covers [math]X[/math]

Lemma for a set being compact

Take a set [math]Y\subset X[/math] in a topological space [math](X,\mathcal{J})[/math].

To say [math]Y[/math] is compact is for [math]Y[/math] to be compact when considered as a subspace of [math](X,\mathcal{J})[/math]

That is to say that [math]Y[/math] is compact if and only if every covering of [math]Y[/math] by sets open in [math]X[/math] contains a finite subcovering covering [math]Y[/math]

Proof

[math]\implies[/math]

Suppose that the space [math](Y,\mathcal{J}_\text{subspace})[/math] is compact and that [math]\mathcal{A}=\{A_\alpha\}_{\alpha\in I}[/math] where each [math]A_\alpha\in\mathcal{J}[/math] (that is each set is open in [math]X[/math]).

Then the collection [math]\{A_\alpha\cap Y|\alpha\in I\}[/math] is a covering of [math]Y[/math] by sets open in [math]Y[/math] (by definition of being a subspace)

By hypothesis [math]Y[/math] is compact, hence a finite subcollection [math]\{A_{\alpha_i}\cap Y\}^n_{i=1}[/math] covers [math]Y[/math] (as to be compact every open cover must have a finite subcover)

Then [math]\{A_{\alpha_i}\}^n_{i=1}[/math] is a subcollection of [math]\mathcal{A}[/math] that covers [math]Y[/math].

Details

As The intersection of sets is a subset of each set and [math]\cup^n_{i=1}(A_{\alpha_i}\cap Y)=Y[/math] we see
[math]x\in\cup^n_{i=1}(A_{\alpha_i}\cap Y)\implies\exists k\in\mathbb{N}\text{ with }1\le k\le n:x\in A_{\alpha_k}\cap Y\implies x\in A_{\alpha_k}\implies x\in\cup^n_{i=1}A_{\alpha_i}[/math]
The important part being [math]x\in\cup^n_{i=1}(A_{\alpha_i}\cap Y)\implies x\in\cup^n_{i=1}A_{\alpha_i}[/math]
then by the implies and subset relation we have [math]Y=\cup^n_{i=1}(A_{\alpha_i}\cap Y)\subset\cup^n_{i=1}A_{\alpha_i}[/math] and conclude [math]Y\subset\cup^n_{i=1}A_{\alpha_i}[/math]


Lastly, as [math]\mathcal{A}[/math] was a covering [math]\cup_{\alpha\in I}A_\alpha=Y[/math].

It is clear that [math]x\in\cup^n_{i=1}A_{\alpha_i}\implies x\in\cup_{\alpha\in I}A_\alpha[/math] so again implies and subset relation we have:
[math]\cup^n_{i=1}A_{\alpha_i}\subset\cup_{\alpha\in I}A_\alpha=Y[/math] thus concluding [math]\cup^n_{i=1}A_{\alpha_i}\subset Y[/math]

Combining [math]Y\subset\cup^n_{i=1}A_{\alpha_i}[/math] and [math]\cup^n_{i=1}A_{\alpha_i}\subset Y[/math] we see [math]\cup^n_{i=1}A_{\alpha_i}=Y[/math]

Thus [math]\{A_{\alpha_i}\}^n_{i=1}[/math] is a finite covering of [math]Y[/math] consisting of open sets from [math]X[/math]

[math]\impliedby[/math]