Norm

From Maths
Revision as of 16:18, 7 March 2015 by Alec (Talk | contribs)

Jump to: navigation, search

Definition

A norm on a vector space [ilmath](V,F)[/ilmath] is a function [math]\|\cdot\|:V\rightarrow\mathbb{R}[/math] such that:

  1. [math]\forall x\in V\ \|x\|\ge 0[/math]
  2. [math]\|x\|=0\iff x=0[/math]
  3. [math]\forall \lambda\in F, x\in V\ \|\lambda x\|=|\lambda|\|x\|[/math] where [math]|\cdot|[/math] denotes absolute value
  4. [math]\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|[/math] - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • [math]\|x\|\ge 0\text{ and }\|x\|=0\iff x=0[/math] so only 3 requirements will be stated.

I don't like this

Examples

The Euclidean Norm

The Euclidean norm is denoted [math]\|\cdot\|_2[/math]


Here for [math]x\in\mathbb{R}^n[/math] we have:

[math]\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}[/math]


TODO: proof