Difference between revisions of "A map from two sigma-algebras, A and B, is measurable if and only if for some generator of B (call it G) we have the inverse image of S is in A for every S in G"

From Maths
Jump to: navigation, search
m
m (Done half of the proof)
 
Line 8: Line 8:
 
* {{M|f^{-1}(\mathcal{G})\subseteq\mathcal{A} }}
 
* {{M|f^{-1}(\mathcal{G})\subseteq\mathcal{A} }}
 
==Proof==
 
==Proof==
 +
==={{M|\implies}}: {{M|f:A\rightarrow B}} is {{M|\mathcal{A}/\mathcal{F} }}-measurable {{M|\implies}} for some generator {{M|\mathcal{G} }} of {{M|\mathcal{F} }} we have {{M|1=\forall S\in\mathcal{G}[f^{-1}(S)\in\mathcal{A}]}}===
 +
* Let {{M|S\in\mathcal{G} }} be given
 +
** Note that {{M|\mathcal{G}\subseteq\sigma(\mathcal{G})}}, so by the [[implies-subset relation]] we see {{M|S\in\mathcal{G}\implies S\in\sigma(\mathcal{G})}}
 +
** By [[measurable map|the definition of {{M|\mathcal{A}/\mathcal{F} }}-measurable]]:
 +
*** {{M|\forall S\in F[f^{-1}(S)\in\mathcal{A}]}}
 +
** Thus {{M|1=S\in\mathcal{G}\implies S\in\sigma(\mathcal{G})=\mathcal{F} }}
 +
*** But as we've just seen, if {{M|S\in\mathcal{F} }} then {{M|f^{-1}(S)\in\mathcal{A} }}
 +
* So {{M|f^{-1}(S)\in\mathcal{A} }}
 +
This completes the proof
 +
==={{M|\impliedby}}:===
 
{{Todo|See ref<ref name="PAS"/> page 6, also lemma 7.2 in<ref name="MIAMRLS"/>}}
 
{{Todo|See ref<ref name="PAS"/> page 6, also lemma 7.2 in<ref name="MIAMRLS"/>}}
 
==Notes==
 
==Notes==

Latest revision as of 13:23, 18 March 2016


(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.

Statement

A map from a [ilmath]\sigma[/ilmath]-algebra [ilmath](A,\mathcal{A})[/ilmath] to another [ilmath]\sigma[/ilmath]-algebra [ilmath](F,\mathcal{F})[/ilmath], [ilmath]f:A\rightarrow F[/ilmath], is [ilmath]\mathcal{A}/\mathcal{F} [/ilmath] measurable if and only if for some generator, [ilmath]\mathcal{G} [/ilmath], of [ilmath]\mathcal{F} [/ilmath][Note 1] we have[1][2]:

  • [ilmath]\forall S\in\mathcal{G}[f^{-1}(S)\in\mathcal{A}][/ilmath]

Which we may alternatively write (for brevity, see: abuses of the implies-subset relation) as:

  • [ilmath]f^{-1}(\mathcal{G})\subseteq\mathcal{A} [/ilmath]

Proof

[ilmath]\implies[/ilmath]: [ilmath]f:A\rightarrow B[/ilmath] is [ilmath]\mathcal{A}/\mathcal{F} [/ilmath]-measurable [ilmath]\implies[/ilmath] for some generator [ilmath]\mathcal{G} [/ilmath] of [ilmath]\mathcal{F} [/ilmath] we have [ilmath]\forall S\in\mathcal{G}[f^{-1}(S)\in\mathcal{A}][/ilmath]

  • Let [ilmath]S\in\mathcal{G} [/ilmath] be given
    • Note that [ilmath]\mathcal{G}\subseteq\sigma(\mathcal{G})[/ilmath], so by the implies-subset relation we see [ilmath]S\in\mathcal{G}\implies S\in\sigma(\mathcal{G})[/ilmath]
    • By the definition of [ilmath]\mathcal{A}/\mathcal{F} [/ilmath]-measurable:
      • [ilmath]\forall S\in F[f^{-1}(S)\in\mathcal{A}][/ilmath]
    • Thus [ilmath]S\in\mathcal{G}\implies S\in\sigma(\mathcal{G})=\mathcal{F}[/ilmath]
      • But as we've just seen, if [ilmath]S\in\mathcal{F} [/ilmath] then [ilmath]f^{-1}(S)\in\mathcal{A} [/ilmath]
  • So [ilmath]f^{-1}(S)\in\mathcal{A} [/ilmath]

This completes the proof

[ilmath]\impliedby[/ilmath]:


TODO: See ref[2] page 6, also lemma 7.2 in[1]


Notes

  1. Thus [ilmath]\mathcal{F}=\sigma(\mathcal{G})[/ilmath]

References

  1. 1.0 1.1 Measures, Integrals and Martingales - René L. Schilling
  2. 2.0 2.1 Probability and Stochastics - Erhan Cinlar