Smooth function

From Maths
Revision as of 22:39, 12 April 2015 by Alec (Talk | contribs)

Jump to: navigation, search

Definition

A smooth function on a smooth [ilmath]n[/ilmath]-manifold, [ilmath](M,\mathcal{A})[/ilmath], is a function[1] [ilmath]f:M\rightarrow\mathbb{R}^k[/ilmath] that satisfies:

[ilmath]\forall p\in M\ \exists\ (U,\varphi)\in\mathcal{A} [/ilmath] such that [ilmath]f\circ\varphi^{-1}\subseteq\mathbb{R}^n\rightarrow\mathbb{R}^k [/ilmath] is [ilmath]C^\infty[/ilmath]/smooth in the usual sense, of having continuous partial derivatives of all orders.

Any smoothly compatible map (so all in the atlas of the smooth manifold) will have a smooth transition function, by composition, the result will be smooth, so [ilmath]f[/ilmath] is still smooth.

Note that given an [ilmath]f:M\rightarrow\mathbb{R}^k[/ilmath] this is actually just a set of functions, [ilmath]f_1,\cdots,f_k[/ilmath] where [ilmath]f_i:M\rightarrow\mathbb{R} [/ilmath] and [ilmath]f(p)=(f_1(p),\cdots,f_k(p))[/ilmath]

Notations

The set of all smooth functions

Without knowledge of smooth manifolds we may already define [ilmath]C^\infty(\mathbb{R}^n)[/ilmath] - the set of all functions with continuous partial derivatives of all orders.

However with this definition of a smooth function we may go further:

The set of all smooth functions on a manifold

Given a smooth [ilmath]n[/ilmath]-manifold, [ilmath]M[/ilmath], we now know what it means for a function to be smooth on it, so:

Let [math]f\in C^\infty(M)\iff f:M\rightarrow\mathbb{R}[/math] is smooth

See also

References

  1. Introduction to smooth manifolds - John M Lee - Second Edition