Integral of a simple function (measure theory)
From Maths
(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
DESPERATELY needs fleshing out
Definition
For a simple function in its standard representation, say [ilmath]f:=\sum^n_{i=0}x_i\mathbf{1}_{A_i}[/ilmath] then the [ilmath]\mu[/ilmath]-integral, [ilmath]I_\mu:\mathcal{E}^+\rightarrow\mathbb{R} [/ilmath] is[1]:
- [math]I_\mu(f):=\sum^n_{i=1}x_i\mu(A_i)\in[0,\infty][/math]
Note that this is independent of the particular standard representation of [ilmath]f[/ilmath].
Proof of claims
Claim 1: the [ilmath]\mu[/ilmath]-integral of a simple function is independent of which standard representation it is evaluated as.
See next
See also
References
|