Difference between revisions of "Index of notation"

From Maths
Jump to: navigation, search
m
m
Line 31: Line 31:
 
* Real Analysis
 
* Real Analysis
 
| It is a norm on <math>C([a,b],\mathbb{R})</math>, given by <math>\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)</math>
 
| It is a norm on <math>C([a,b],\mathbb{R})</math>, given by <math>\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)</math>
 +
|-
 +
| <math>C^\infty</math>
 +
|
 +
* Differential Geometry
 +
* Manifolds
 +
| That a function has continuous (partial) derivatives of all orders, it is a generalisation of <math>C^k</math> functions
 +
|-
 +
| <math>C^k</math> ''[at {{M|p}}]''
 +
|
 +
* Differential Geometry
 +
* Manifolds
 +
| A function is said to be <math>C^k</math> [at {{M|p}}] if all (partial) derivatives of all orders exist and are continuous [at {{M|p}}]
 
|-
 
|-
 
| <math>C^k([a,b],\mathbb{R})</math>
 
| <math>C^k([a,b],\mathbb{R})</math>
Line 38: Line 50:
 
| It is the set of all functions <math>:[a,b]\rightarrow\mathbb{R}</math> that are [[Continuous map|continuous]] and have continuous derivatives up to (and including) order <math>k</math><br/>
 
| It is the set of all functions <math>:[a,b]\rightarrow\mathbb{R}</math> that are [[Continuous map|continuous]] and have continuous derivatives up to (and including) order <math>k</math><br/>
 
The unit interval will be assumed when missing
 
The unit interval will be assumed when missing
 +
|-
 +
| <math>\mathcal{D}_a(\mathbb{R}^n)</math>
 +
|
 +
* Differential Geometry
 +
* Manifolds
 +
| Denotes [[Set of all derivations at a point]] - sometimes denoted {{M|T_a(\mathbb{R}^n)}} (and such authors will denote the tangent space as {{M|\mathbb{R}^n_a}})
 
|-
 
|-
 
| <math>\bigudot_i A_i</math>
 
| <math>\bigudot_i A_i</math>
Line 58: Line 76:
 
* Measure Theory
 
* Measure Theory
 
| Same as <math>\mathcal{L}^p</math>
 
| Same as <math>\mathcal{L}^p</math>
 +
|-
 +
| <math>T_p(\mathbb{R}^n)</math>
 +
|
 +
* Differential Geometry
 +
* Manifolds
 +
| The [[Tangent space|tangent space]] at a point {{M|a}}<br />
 +
Sometimes denoted {{M|\mathbb{R}^n_a}} - '''Note:''' sometimes can mean [[Set of all derivations at a point]] which is often denoted {{M|\mathcal{D}_a(\mathbb{R}^n)}}
 
|}
 
|}
  

Revision as of 00:13, 5 April 2015

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]Ordered symbols are notations which are (likely) to appear as they are given here, for example [math]C([a,b],\mathbb{R})[/math] denotes the continuous function on the interval [ilmath][a,b][/ilmath] that map to [ilmath]\mathbb{R} [/ilmath] - this is unlikely to be given any other way because "C" is for continuous.

Ordered symbols

These are ordered by symbols, and then by LaTeX names secondly, for example [math]A[/math] comes before [math]\mathbb{A}[/math] comes before [math]\mathcal{A}[/math]

Expression Context Details
[math]\|\cdot\|[/math]
  • Functional Analysis
  • Real Analysis
Denotes the Norm of a vector
[math]\|f\|_{C^k}[/math]
  • Functional Analysis
This Norm is defined by [math]\|f\|_{C^k}=\sum^k_{i=0}\sup_{t\in[0,1]}(|f^{(i)}(t)|)[/math] - note [math]f^{(i)}[/math] is the [math]i^\text{th}[/math] derivative.
[math]\|f\|_{L^p}[/math]
  • Functional Analysis
[math]\|f\|_{L^p}=\left(\int^1_0|f(t)|^pdt\right)^\frac{1}{p}[/math] - it is a Norm on [math]\mathcal{C}([0,1],\mathbb{R})[/math]
[math]\|f\|_\infty[/math]
  • Functional Analysis
  • Real Analysis
It is a norm on [math]C([a,b],\mathbb{R})[/math], given by [math]\|f\|_\infty=\sup_{x\in[a,b]}(|f(x)|)[/math]
[math]C^\infty[/math]
  • Differential Geometry
  • Manifolds
That a function has continuous (partial) derivatives of all orders, it is a generalisation of [math]C^k[/math] functions
[math]C^k[/math] [at [ilmath]p[/ilmath]]
  • Differential Geometry
  • Manifolds
A function is said to be [math]C^k[/math] [at [ilmath]p[/ilmath]] if all (partial) derivatives of all orders exist and are continuous [at [ilmath]p[/ilmath]]
[math]C^k([a,b],\mathbb{R})[/math]
  • Functional Analysis
  • Real Analysis
It is the set of all functions [math]:[a,b]\rightarrow\mathbb{R}[/math] that are continuous and have continuous derivatives up to (and including) order [math]k[/math]

The unit interval will be assumed when missing

[math]\mathcal{D}_a(\mathbb{R}^n)[/math]
  • Differential Geometry
  • Manifolds
Denotes Set of all derivations at a point - sometimes denoted [ilmath]T_a(\mathbb{R}^n)[/ilmath] (and such authors will denote the tangent space as [ilmath]\mathbb{R}^n_a[/ilmath])
[math]\bigudot_i A_i[/math] Makes it explicit that the items in the union (the [math]A_i[/math]) are pairwise disjoint, that is for any two their intersection is empty
[math]\ell^p(\mathbb{F})[/math]
  • Functional Analysis
The set of all bounded sequences, that is [math]\ell^p(\mathbb{F})=\{(x_1,x_2,...)|x_i\in\mathbb{F},\ \sum^\infty_{i=1}|x_i|^p<\infty\}[/math]
[math]\mathcal{L}^p[/math]
  • Measure Theory
[math]\mathcal{L}^p(\mu)=\{u:X\rightarrow\mathbb{R}|u\in\mathcal{M},\ \int|u|^pd\mu<\infty\},\ p\in[1,\infty)\subset\mathbb{R}[/math]

[math](X,\mathcal{A},\mu)[/math] is a measure space. The class of all measurable functions for which [math]|f|^p[/math] is integrable

[math]L^p[/math]
  • Measure Theory
Same as [math]\mathcal{L}^p[/math]
[math]T_p(\mathbb{R}^n)[/math]
  • Differential Geometry
  • Manifolds
The tangent space at a point [ilmath]a[/ilmath]

Sometimes denoted [ilmath]\mathbb{R}^n_a[/ilmath] - Note: sometimes can mean Set of all derivations at a point which is often denoted [ilmath]\mathcal{D}_a(\mathbb{R}^n)[/ilmath]

Unordered symbols

Expression Context Details
[math]\mathcal{A}/\mathcal{B}[/math]-measurable
  • Measure Theory
There exists a Measurable map between the [ilmath]\sigma[/ilmath]-algebras
[ilmath]a\cdot b[/ilmath]
  • Anything with vectors
Vector dot product