Factoring a function through the projection of an equivalence relation induced by that function yields an injection

From Maths
Revision as of 12:49, 9 October 2016 by Alec (Talk | contribs) (Statement: Fix weird sentence)

Jump to: navigation, search
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Flesh out and demote

Statement

[ilmath]\xymatrix{ X \ar[r]^f \ar[d]_{\pi} & Y \\ \frac{X}{\sim} \ar@{.>}[ur]_{\tilde{f} } }[/ilmath]
Commutative diagram showing the situation
Let [ilmath]X[/ilmath] and [ilmath]Y[/ilmath] be sets, let [ilmath]f:X\rightarrow Y[/ilmath] be any function between them, and let [ilmath]\sim\subseteq X\times X[/ilmath] denote the equivalence relation induced by the function [ilmath]f[/ilmath], recall that means:
  • [ilmath]\forall x,x'\in X[x\sim x'\iff f(x)=f(x')][/ilmath]

Then we claim we can factor[Note 1] [ilmath]f:X\rightarrow Y[/ilmath] through [ilmath]\pi:X\rightarrow \frac{X}{\sim} [/ilmath][Note 2] to yield an injective map:

  • [ilmath]\tilde{f}:\frac{X}{\sim}\rightarrow Y[/ilmath]

Furthermore, if [ilmath]f:X\rightarrow Y[/ilmath] is surjective then [ilmath]\tilde{f}:\frac{X}{\sim}\rightarrow Y[/ilmath] is not only injective but surjective to, that is: [ilmath]\tilde{f}:\frac{X}{\sim}\rightarrow Y[/ilmath] is a bijection[Note 3].

Proof

Grade: A*
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
Do this now, just saving work

See also

Notes

  1. AKA: passing to the quotient
  2. the canonical projection of the equivalence relation, given by [ilmath]\pi:x\mapsto [x][/ilmath] where [ilmath][x][/ilmath] denotes the equivalence class containing [ilmath]x[/ilmath]
  3. See "If a surjective function is factored through the canonical projection of the equivalence relation induced by that function then the yielded function is a bijection" for details

References