Circular motion/Notes
From Maths
Acceleration
- a(t)=p(t)⋅(r″(t)r(t)−(θ′(t))2)+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))], or:
- substituting in p(t) by it's definition:
- a(t)=(r″(t)r(t)−(θ′(t))2)⋅[r(t)⋅cos(θ(t))r(t)⋅sin(θ(t))]+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))]
- However in many special cases it is useful to consider the first form with p(t) in it.
- a(t)=(r″(t)r(t)−(θ′(t))2)⋅[r(t)⋅cos(θ(t))r(t)⋅sin(θ(t))]+(θ″(t)⋅r(t)+2θ′(t)⋅r′(t))⋅[−sin(θ(t))cos(θ(t))]
- substituting in p(t) by it's definition:
Special cases
- unchanging radius, r(t):=r0∈R>0
- obviously, now r′(t)=0 and r″(t)=0, thus:
- a(t)=−(θ″(t))2⋅p(t)+(θ″(t)⋅r(t))⋅[−sin(θ(t))cos(θ(t))]
- =θ″(t)(r(t)⋅[−sin(θ(t))cos(θ(t))]−θ″(t)⋅p(t))
- But notice:
- a(t)=θ″(t)([−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t))]−θ″(t)⋅p(t))
- =θ″(t)([−py(t)px(t)]−θ″(t)⋅p(t))
- a(t)=θ″(t)([−r(t)⋅sin(θ(t))r(t)⋅cos(θ(t))]−θ″(t)⋅p(t))
- a(t)=−(θ″(t))2⋅p(t)+(θ″(t)⋅r(t))⋅[−sin(θ(t))cos(θ(t))]
- obviously, now r′(t)=0 and r″(t)=0, thus:
There must be a geometric interpretation for this! As the vector here is p(t) reflected in the line x=0!