Characteristic property of the direct product module/Statement
From Maths
Contents
[hide]Statement
Let (R,*,+,0) be a ring (with or without unity) and let (M_\alpha)_{\alpha\in I} be an arbitrary indexed family of R-modules. Let \prod_{\alpha\in I}M_\alpha be their direct product, as usual. Then[1]:- For any R-module, M and
- For any indexed family (\varphi_\alpha:M\rightarrow M_\alpha)_{\alpha\in I} of module homomorphisms
- There exists a unique morphism[Note 1], \varphi:M\rightarrow\prod_{\alpha\in I}M_\alpha such that:
- \forall\alpha\in I[\pi_\alpha\circ\varphi=\varphi_\alpha]
- There exists a unique morphism[Note 1], \varphi:M\rightarrow\prod_{\alpha\in I}M_\alpha such that:
- For any indexed family (\varphi_\alpha:M\rightarrow M_\alpha)_{\alpha\in I} of module homomorphisms
TODO: Link to diagram, this basically says it all though!