Characteristic property of the direct product module/Statement

From Maths
Jump to: navigation, search

Statement

\begin{xy} \xymatrix{ & & \prod_{\alpha\in I}M_\alpha \ar[dd] \\ & & \\ M \ar[uurr]^\varphi \ar[rr]+<-0.9ex,0.15ex>|(.875){\hole} & & X_b \save (15,13)+"3,3"*+{\ldots}="udots"; (8.125,6.5)+"3,3"*+{X_a}="x1"; (-8.125,-6.5)+"3,3"*+{X_c}="x3"; (-15,-13)+"3,3"*+{\ldots}="ldots"; \ar@{->} "x1"; "1,3"; \ar@{->}_(0.65){\pi_c,\ \pi_b,\ \pi_a} "x3"; "1,3"; \ar@{->}|(.873){\hole} "x1"+<-0.9ex,0.15ex>; "3,1"; \ar@{->}_{\varphi_c,\ \varphi_b,\ \varphi_a} "x3"+<-0.9ex,0.3ex>; "3,1"; \restore } \end{xy}

TODO: Description


Let (R,*,+,0) be a ring (with or without unity) and let (M_\alpha)_{\alpha\in I} be an arbitrary indexed family of R-modules. Let \prod_{\alpha\in I}M_\alpha be their direct product, as usual. Then[1]:
  • For any R-module, M and
    • For any indexed family (\varphi_\alpha:M\rightarrow M_\alpha)_{\alpha\in I} of module homomorphisms
      • There exists a unique morphism[Note 1], \varphi:M\rightarrow\prod_{\alpha\in I}M_\alpha such that:
        • \forall\alpha\in I[\pi_\alpha\circ\varphi=\varphi_\alpha]

TODO: Link to diagram, this basically says it all though!



Notes

  1. Jump up Morphism - short for homomorphisms in the relevant category, in this case modules

References

  1. Jump up Abstract Algebra - Pierre Antoine Grillet