Difference between revisions of "C(I,X)"

From Maths
Jump to: navigation, search
(Created page with "{{DISPLAYTITLE:{{M|C([0,1],X)}}}} __TOC__ ==Definition== Let {{Top.|X|J}} be a topological space and let {{M|1=I:=[0,1]\subset\mathbb{R} }} - the closed unit interval....")
 
m (See also: link)
Line 12: Line 12:
 
* [[Omega(X,b)|{{M|\Omega(X,b)}}]]
 
* [[Omega(X,b)|{{M|\Omega(X,b)}}]]
 
** [[The fundamental group]], {{M|\pi_1(X,b)}}, which is the {{link|quotient|equivalence relation}} of {{M|\Omega(X,b)}} with the [[equivalence relation]] of [[end point preserving homotopic]] loops.
 
** [[The fundamental group]], {{M|\pi_1(X,b)}}, which is the {{link|quotient|equivalence relation}} of {{M|\Omega(X,b)}} with the [[equivalence relation]] of [[end point preserving homotopic]] loops.
* [[Index of spaces and classes]]
+
* [[Index of spaces, sets and classes]]
 +
 
 
==Notes==
 
==Notes==
 
<references group="Note"/>
 
<references group="Note"/>

Revision as of 04:47, 3 November 2016

Definition

Let [ilmath](X,\mathcal{ J })[/ilmath] be a topological space and let [ilmath]I:=[0,1]\subset\mathbb{R}[/ilmath] - the closed unit interval. Then [ilmath]C(I,X)[/ilmath] denotes the set of continuous functions between the interval, considered with the subspace topology it inherits from the reals[Note 1] - as usual.


Specifically [ilmath]C(I,X)[/ilmath] or [ilmath]C([0,1],X)[/ilmath] is the space of all paths in [ilmath](X,\mathcal{ J })[/ilmath]. That is:

  • if [ilmath]f:I\rightarrow X\in C(I,X)[/ilmath] then [ilmath]f[/ilmath] is a path with initial point [ilmath]f(0)[/ilmath] and final/terminal point [ilmath]f(1)[/ilmath]

It includes as a subset, [ilmath]\Omega(X,b)[/ilmath] - the set of all loops in [ilmath]X[/ilmath] based at [ilmath]b[/ilmath][Note 2] - for all [ilmath]b\in X[/ilmath].

See also

Notes

  1. That topology is that generated by the metric [ilmath]\vert\cdot\vert[/ilmath] - absolute value.
  2. A loop is a path where [ilmath]f(0)=f(1)[/ilmath], the loop is said to be based at [ilmath]b:=f(0)=f(1)[/ilmath]

References