Borv
From Maths
(Redirected from BORV)
- \newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} } Borvs, (a special case of aMorv) is one of the most fundamental distributions there is and many standard distribution are built from it.
Contents
[hide]Definition
For X\sim\text{Borv}(p), for p\in [0,1]\subseteq\mathbb{R} we have \P{X\eq 1}:\eq p and \P{X\eq 0}\eq 1-p - there are no other values X may take.
For this we have the following properties:
- \E{X}\eq p
- \E{X^2}\eq p
- \text{Var}(X)\eq p(1-p)
- \text{Mdm}(X)\eq 2p(1-p)
- \text{Mdm}^2(X)\eq 2p\big\vert(1-p)(1-2p)\big\vert
- This is 0 for p\eq 0, p\eq \frac{1}{2} and p\eq 1
- It is maximised for p\eq \frac{1}{2}\left(1\pm\frac{1}{\sqrt{3} }\right) or p\eq \frac{1}{2}\pm\frac{\sqrt{3} }{6}