Semi-ring of sets/Definition
From Maths
Definition
A collection of sets, \mathcal{F} [Note 1] is called a semi-ring of sets if[1]:
- \emptyset\in\mathcal{F}
- \forall S,T\in\mathcal{F}[S\cap T\in\mathcal{F}]
- \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\text{ pairwise disjoint}[S-T=\bigudot_{i=1}^m S_i][Note 2] - this doesn't require S-T\in\mathcal{F} note, it only requires that their be a finite collection of disjoint elements whose union is S-T.
Notes
- Jump up ↑ An F is a bit like an R with an unfinished loop and the foot at the right. "Semi Ring".
- Jump up ↑ Usually the finite sequence ({ S_i })_{ i = m }^{ \infty }\subseteq \mathcal{F} being pairwise disjoint is implied by the \bigudot however here I have been explicit. To be more explicit we could say:
- \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\underbrace{\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)}_{\text{the }S_i\text{ are pairwise disjoint} }\overbrace{\wedge}^\text{and}\left(S-T=\bigcup_{i=1}^m S_i\right)\right]
- Caution:The statement: \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)\implies\left(S-T=\bigcup_{i=1}^m S_i\right)\right] is entirely different
- In this statement we are only declaring that a finite sequence exists, and if it is NOT pairwise disjoint, then we may or may not have S-T=\bigcup_{i=1}^mS_i. We require that they be pairwise disjoint AND their union be the set difference of S and T.
- Caution:The statement: \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)\implies\left(S-T=\bigcup_{i=1}^m S_i\right)\right] is entirely different
- \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\underbrace{\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)}_{\text{the }S_i\text{ are pairwise disjoint} }\overbrace{\wedge}^\text{and}\left(S-T=\bigcup_{i=1}^m S_i\right)\right]