Semi-ring of sets/Definition

From Maths
Jump to: navigation, search

Definition

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }

A collection of sets, \mathcal{F} [Note 1] is called a semi-ring of sets if[1]:

  1. \emptyset\in\mathcal{F}
  2. \forall S,T\in\mathcal{F}[S\cap T\in\mathcal{F}]
  3. \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\text{ pairwise disjoint}[S-T=\bigudot_{i=1}^m S_i][Note 2] - this doesn't require S-T\in\mathcal{F} note, it only requires that their be a finite collection of disjoint elements whose union is S-T.

Notes

  1. Jump up An F is a bit like an R with an unfinished loop and the foot at the right. "Semi Ring".
  2. Jump up Usually the finite sequence ({ S_i })_{ i = m }^{ \infty }\subseteq \mathcal{F} being pairwise disjoint is implied by the \bigudot however here I have been explicit. To be more explicit we could say:
    • \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\underbrace{\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)}_{\text{the }S_i\text{ are pairwise disjoint} }\overbrace{\wedge}^\text{and}\left(S-T=\bigcup_{i=1}^m S_i\right)\right]
      • Caution:The statement: \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)\implies\left(S-T=\bigcup_{i=1}^m S_i\right)\right] is entirely different
        • In this statement we are only declaring that a finite sequence exists, and if it is NOT pairwise disjoint, then we may or may not have S-T=\bigcup_{i=1}^mS_i. We require that they be pairwise disjoint AND their union be the set difference of S and T.

References

  1. Jump up Measures, Integrals and Martingales - René L. Schilling