Krzysztof Maurin's notation
From Maths
Analysis - Part I: Elements
Notation | Read as[1] | Notes |
---|---|---|
[ilmath]\wedge[/ilmath] | "and" | |
[ilmath]\bigwedge_x[/ilmath], [math]\bigwedge_x[/math] | "for all [ilmath]x[/ilmath] there follows" | Equiv to [ilmath]\forall x[/ilmath], [ilmath]x[/ilmath] may be a statement (eg: [ilmath]x:=y\in Y[/ilmath]) |
[ilmath]\vee[/ilmath] | "or" | |
[ilmath]\bigvee_x[/ilmath], [math]\bigvee_x[/math] | "there exists an [ilmath]x[/ilmath] such that" | Equiv to [ilmath]\exists x[/ilmath], [ilmath]x[/ilmath] may be a statement (eg: [ilmath]x:=y\in Y[/ilmath]) |
[ilmath]¬[/ilmath] | "Not" | |
[ilmath]\implies[/ilmath] | "if, ..., then" | Meaning: if left side then right side, see Implies |
[ilmath]\iff[/ilmath] | "if and only if" | Implication in both directions, if left then right, if right then left |
[ilmath]:=[/ilmath] | "equal by definition" |
Examples
Maurin gives some examples:
- Contrapositive: [ilmath](p\implies q)\iff(¬q\implies ¬p)[/ilmath]
- De Morgan's laws: [ilmath]¬(p\wedge q)\iff(¬p\vee ¬q)[/ilmath] and [ilmath]¬(p\vee q)\iff(¬p\wedge ¬q)[/ilmath]
References
- ↑ Analysis - Part I: Elements - Krzysztof Maurin