Exercises:Rings and Modules - 2016 - 1
Contents
Problems
Problem 1
Part A
Let [ilmath]R[/ilmath] be a u-ring. Fix an [ilmath]a\in R[/ilmath] and define a homomorphism:
- [ilmath]\varphi_a:R[T]\rightarrow R[/ilmath] by [ilmath]\varphi_a:P(T)\mapsto P(a)[/ilmath] - evaluation at [ilmath]a[/ilmath].
By restriction of scalars every [ilmath]\varphi_a[/ilmath] gives the target [ilmath]R[/ilmath] the structure of an [ilmath]R[T][/ilmath]-module, which we denote [ilmath]R_a[/ilmath].
Show that for [ilmath]a,b\in R[/ilmath] that:
- there is an [ilmath]R[T][/ilmath]-module isomorphism between [ilmath]R_a[/ilmath] and [ilmath]R_b[/ilmath]
- [ilmath]a=b[/ilmath]
Solution
Part B
Let [ilmath]M[/ilmath] be an [ilmath]R[/ilmath]-module. Show that there is a surjection from a free [ilmath]R[/ilmath]-module onto [ilmath]M[/ilmath].
Solution
Part C
Show that the [ilmath]\mathbb{Z} [/ilmath]-module, [ilmath]\mathbb{Q} [/ilmath], is not free.
Solution
Problem 2
Part A
Compute the homology groups at [ilmath]\mathbb{Q}^5[/ilmath] and [ilmath]\mathbb{Z}^5[/ilmath] of the the following complexes:
- [ilmath]\xymatrix{ \mathbb{Q}^3 \ar[r]^{f_1} & \mathbb{Q}^5 \ar[r]^{f_2} & \mathbb{Q}^2 } [/ilmath] with [ilmath]f_1:=\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{pmatrix}[/ilmath] and [ilmath]f_2:=\begin{pmatrix} 1 & 1 & 0 & -1 & -1 \\ 2 & 2 & 0 & -2 & -2\end{pmatrix}[/ilmath]
- [ilmath]\xymatrix{ \mathbb{Z}^3 \ar[r]^{f_1} & \mathbb{Z}^5 \ar[r]^{f_2} & \mathbb{Z}^2 } [/ilmath] with [ilmath]f_1:=\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{pmatrix}[/ilmath] and [ilmath]f_2:=\begin{pmatrix} 1 & 1 & 0 & -1 & -1 \\ 2 & 2 & 0 & -2 & -2\end{pmatrix}[/ilmath]
Solution
Part B
Let:
be a commutative diagram of [ilmath]R[/ilmath]-modules in which the rows are exact sequences. Show the Five lemma:
- If [ilmath]f_1,f_2,f_4[/ilmath] and [ilmath]f_5[/ilmath] are isomorphism then so is [ilmath]f_3[/ilmath]
Solution
Problem 3
TODO: Problem statement
Solution
TODO: Solution
Problem 4
TODO: Problem statement
Solution
TODO: Solution