Circular motion
From Maths
Provisional page grade: A
This page is provisional
This page is provisional and the information it contains may change before this notice is removed (in a backwards incompatible way). This usually means the content is from one source and that source isn't the most formal, or there are many other forms floating around. It is on a to-do list for being expanded.The message provided is:
This and pendulum stuff
Contents
[hide]Notes
General polar motion
For convenience we will denote:
- ddt[θ(t)]|tas θ′(t) and ddt[θ′(t)]|tas θ″(t)
- ddt[r(t)]|tas r′(t) and ddt[r′(t)]|tas r″(t)
Let:
- p(t):=[r(t) cos(θ(t))r(t) sin(θ(t))] be used for position - with respect to time
- v(t):=ddt[p(t)]|t
- v(t)=ddt[r(t)]|t⋅[cos(θ(t))sin(θ(t))] + ddt[θ(t)]|t⋅r(t)⋅[−sin(θ(t))cos(θ(t))]
- =r′(t)[cos(θ(t))sin(θ(t))]+θ′(t)⋅r(t)⋅[−sin(θ(t))cos(θ(t))]
- =r′(t)[cos(θ(t))sin(θ(t))]+θ′(t)⋅r(t)⋅[−sin(θ(t))cos(θ(t))]
- v(t)=ddt[r(t)]|t⋅[cos(θ(t))sin(θ(t))] + ddt[θ(t)]|t⋅r(t)⋅[−sin(θ(t))cos(θ(t))]
- a(t):=ddt[v(t)]|t
- a(t)=r″(t)[cos(θ(t))sin(θ(t))]+2θ′(t)r′(t)[−sin(θ(t))cos(θ(t))]+θ″(t)r(t)[−sin(θ(t))cos(θ(t))]−(θ′(t))2[r(t)cos(θ(t))r(t)sin(θ(t))]
- =r″(t)r(t)p(t)+[−sin(θ(t))cos(θ(t))][θ″(t)r(t)+2θ′(t)r′(t)]−(θ′(t))2p(t)
- =p(t)[r″(t)r(t)−(θ′(t))2]+[−sin(θ(t))cos(θ(t))][θ″(t)r(t)+2θ′(t)r′(t)]
- =r″(t)r(t)p(t)+[−sin(θ(t))cos(θ(t))][θ″(t)r(t)+2θ′(t)r′(t)]−(θ′(t))2p(t)
- a(t)=r″(t)[cos(θ(t))sin(θ(t))]+2θ′(t)r′(t)[−sin(θ(t))cos(θ(t))]+θ″(t)r(t)[−sin(θ(t))cos(θ(t))]−(θ′(t))2[r(t)cos(θ(t))r(t)sin(θ(t))]
Work to do:
- Reduce to circular case first by setting r(t)=c for some constant c>0 and handle r(t)=0 special cases.
- Define ω(t):=θ′(t)
- Get to p″(t)=−(ω(t))2 p(t)