Covering space

From Maths
Redirect page
Jump to: navigation, search


Stub grade: A**
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
What to do with the old content? First chance since 15th April 2015! Alec (talk) 01:26, 26 February 2017 (UTC)

OLD PAGE

[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math]

Definition

Here [ilmath](E,\mathcal{K})[/ilmath] and [ilmath](X,\mathcal{J})[/ilmath] are topological spaces

Covering projection

A map [math]p:(E,\mathcal{K})\rightarrow(X,\mathcal{J})[/math] is a covering projection (also known as covering map) if[1]:

  • [math]\forall x\in X\exists U\in\mathcal{J}\ \exists[/math] a non-empty collection of disjoint open sets [ilmath]V_\alpha[/ilmath] such that [math]p^{-1}(U)=\bigudot_{\alpha\in I}V_\alpha[/math] where [math]\forall\alpha\in I[/math] we have [math]p|_{V_\alpha}:V_\alpha\rightarrow X[/math] being a homeomorphism

Terminology

  • [ilmath]X[/ilmath] is the Base space of the covering map (or projection)
  • [ilmath]E[/ilmath] is the Covering space of the covering map (or projection)

Immediate results

  • The covering map is a surjection (it is clearly onto, as for all points in [ilmath]X[/ilmath] - something must map to it!)

Examples


TODO: add example from reference - maybe take a picture



References

  1. http://www.math.toronto.edu/mat1300/covering-spaces.pdf