Variance of the geometric distribution
From Maths
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} } \newcommand{\d}[0]{\mathrm{d} } \newcommand{\ddq}[1]{ \frac{\d}{\d q}{\left[{#1}\middle]\right\vert_q} } Contents
[hide]Notes
Final steps
Recall q:\eq 1-p
Computing \frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3} q^k\middle]\right\vert_q
We leave the bottom of the paper workings with:
- \frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3} q^k\middle]\right\vert_q
- \eq\frac{\d}{\d q}\left[\frac{1}{(1-q)^2}-1-2q\middle]\right\vert_q
- \eq -2+\ddq{(1-q)^{-2} }
- \eq -2+(-2)(1-q)^{-3}\cdot\ddq{1-q}
- \eq -2+\frac{-2}{(1-q)^3}\cdot (-1)
- \eq\ 2\left(\frac{1}{(1-q)^3}-1\right)
- We may now substitute q\eq 1-p (as q:\eq 1-p so p\eq 1-q follows)
- This yields:
- \frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3} q^k\middle]\right\vert_q \eq 2\left(\frac{1}{p^3}-1\right)
- This yields:
Computing \E{X^2}
Recall:
- q:\eq 1-p
- \alpha:\eq \P{X\eq 1}+4\P{X\eq 2}
- \beta:\eq \P{X\eq 1}+2\P{X\eq 2}
The previous step yielded:
- \frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3} q^k\middle]\right\vert_q \eq\ 2\left(\frac{1}{p^3}-1\right)
and we got as far as:
- \E{X^2}\eq \alpha-\beta+\E{X}+pq\left(\frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3}q^k\middle]\right\vert_q\right)
So:
- pq\left(\frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3}q^k\middle]\right\vert_q\right)
- \eq 2pq\left(\frac{1}{p^3}-1\right)
- \eq 2q\left(\frac{1}{p^2}-p\right)
- \eq 2(1-p)\left(\frac{1}{p^2}-p\right)
Now we substitute this all in to \E{X^2}\eq \alpha-\beta+\E{X}+pq\left(\frac{\d^2}{\d q^2}\left[\sum^\infty_{k\eq 3}q^k\middle]\right\vert_q\right) and:
- \E{X^2}\eq \P{X\eq 1}+4\P{X\eq 2}-\P{X\eq 1}-2\P{X\eq 2}+\frac{1}{p}+2(1-p)\left(\frac{1}{p^2}-p\right)
- \eq 2\P{X\eq 2}+\frac{1}{p}+2(1-p)\left(\frac{1}{p^2}-\frac{p^2}{p^2}\right) - Warning:Error is here, the \frac{p^2}{p^2} should be \frac{p^3}{p^2} instead! - I'm just saving my work, I scrutinised everything and the error was here!
- \eq 2(1-p)p+\frac{1}{p}+2(1-p)\frac{1-p^2}{p^2}
- \eq \frac{1}{p}+2(1-p)\left(p+\frac{1-p^2}{p^2}\right)
- \eq \frac{1}{p}+2(1-p)\left(\frac{p^3}{p^2}+\frac{1-p^2}{p^2}\right)
- \eq \frac{1}{p}+2(1-p)\frac{p^3-p^2+1}{p^2}