Mdm of the Binomial distribution
From Maths
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }
Statement
Let n\in\mathbb{N}_{\ge 1} and p\in[0,1]\subseteq\mathbb{R} and:
- X\sim\text{Bin} (n,p) - so X is a Binomial random variable
We will calculate the Mdm of X, \E{\big\vert X-\E{X}\big\vert}
Proof
- \Mdm(X)