Compactness
From Maths
Definition
A topological space is compact if every open cover (often denoted [math]\mathcal{A}[/math]) of [math]X[/math] contains a finite sub-collection that also covers [math]X[/math]
Lemma for a set being compact
Take a set [math]Y\subset X[/math] in a topological space [math](X,\mathcal{J})[/math], [math]Y[/math] is compact considered as a subspace of [math](X,\mathcal{J})[/math]
That is to say that [math]Y[/math] is compact if and only if every covering of [math]Y[/math] by sets open in [math]X[/math] contains a finite subcovering covering [math]Y[/math]
TODO: Proof