Smooth map
[math]\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }[/math][math]\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}[/math][math]\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }[/math] Note: not to be confused with smooth function
Definition
A map [ilmath]f:M\rightarrow N[/ilmath] between two smooth manifolds [ilmath](M,\mathcal{A})[/ilmath] and [ilmath](N,\mathcal{B})[/ilmath] (of not necessarily the same dimension) is said to be smooth[1] if:
- [math]\forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B}[/math] such that [math]F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)][/math] is smooth
Via commutative diagrams
A map is smooth if the following diagram commutes:
[math]\begin{CD} M @> F > > N\\ @V \varphi V V @V V\psi V\\ \varphi(U) @> G >=\psi\circ F\circ\varphi^{-1} > \psi(V) \end{CD}[/math]
Where:
- [ilmath]G[/ilmath] is smooth
- (given by [ilmath]G=\psi\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)[/ilmath])
- [ilmath]M,N[/ilmath] are smooth manifolds (with smooth structures) [ilmath]\mathcal{A},\mathcal{B} [/ilmath] respectively
- [ilmath](U,\varphi)\in\mathcal{A} [/ilmath]
- [ilmath](V,\psi)\in\mathcal{B} [/ilmath]
See also
References
- ↑ Introduction to smooth manifolds - John M Lee - Second Edition