From Maths
< Index of notation
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Expression
|
Status
|
Meanings
|
See also
|
[ilmath]C(X,Y)[/ilmath]
|
current
|
The set of continuous functions between topological spaces. There are many special cases of what [ilmath]X[/ilmath] and [ilmath]Y[/ilmath] might be, for example: [ilmath]C(I,X)[/ilmath] - all paths in [ilmath](X,\mathcal{ J })[/ilmath]. These sets often have additional structure (eg, vector space, algebra)
These spaces may not directly be topological spaces, they may be metric spaces, or normed spaces or inner-product spaces, these of course do have a natural topology associated with them, and it is with respect to that we refer.
- - see Index of notation for sets of continuous maps. Transcluded below for convenience:
Index of notation for sets of continuous maps:
- [ilmath]C(X,Y)[/ilmath] - for topological spaces [ilmath](X,\mathcal{ J })[/ilmath] and [ilmath](Y,\mathcal{ K })[/ilmath], [ilmath]C(X,Y)[/ilmath] is the set of all continuous maps between them.
- [ilmath]C(I,X)[/ilmath] - [ilmath]I:\eq[0,1]\subset\mathbb{R} [/ilmath], set of all paths on a topological space [ilmath](X,\mathcal{ J })[/ilmath]
- Sometimes written: [ilmath]C([0,1],X)[/ilmath]
- [ilmath]C(X,\mathbb{R})[/ilmath] - The algebra of all real functionals on [ilmath]X[/ilmath]. [ilmath]\mathbb{R} [/ilmath] considered with usual topology
- [ilmath]C(X,\mathbb{C})[/ilmath] - The algebra of all complex functionals on [ilmath]X[/ilmath]. [ilmath]\mathbb{C} [/ilmath] considered with usual topology
- [ilmath]C(X,\mathbb{K})[/ilmath] - The algebra of all functionals on [ilmath]X[/ilmath], where [ilmath]\mathbb{K} [/ilmath] is either the reals, [ilmath]\mathbb{R} [/ilmath] or the complex numbers, [ilmath]\mathbb{C} [/ilmath], equipped with their usual topology.
- [ilmath]C(X,\mathbb{F})[/ilmath] - structure unsure at time of writing - set of all continuous functions of the form [ilmath]f:X\rightarrow\mathbb{F} [/ilmath] where [ilmath]\mathbb{F} [/ilmath] is any field with an absolute value, with the topology that absolute value induces.
- [ilmath]C(K,\mathbb{R})[/ilmath] - [ilmath]K[/ilmath] must be a compact topological space. Denotes the algebra of real functionals from [ilmath]K[/ilmath] to [ilmath]\mathbb{R} [/ilmath] - in line with the notation [ilmath]C(X,\mathbb{R})[/ilmath].
- [ilmath]C(K,\mathbb{C})[/ilmath] - [ilmath]K[/ilmath] must be a compact topological space. Denotes the algebra of complex functionals from [ilmath]K[/ilmath] to [ilmath]\mathbb{C} [/ilmath] - in line with the notation [ilmath]C(X,\mathbb{C})[/ilmath].
- [ilmath]C(K,\mathbb{K})[/ilmath] - [ilmath]K[/ilmath] must be a compact topological space. Denotes either [ilmath]C(K,\mathbb{R})[/ilmath] or [ilmath]C(K,\mathbb{C})[/ilmath] - we do not care/specify the particular field - in line with the notation [ilmath]C(X,\mathbb{K})[/ilmath].
- [ilmath]C(K,\mathbb{F})[/ilmath] - denotes that the space [ilmath]K[/ilmath] is a compact topological space, the meaning of the field corresponds to the definitions for [ilmath]C(X,\mathbb{F})[/ilmath] as given above for that field - in line with the notation [ilmath]C(X,\mathbb{F})[/ilmath].
|