Probability space

From Maths
Revision as of 08:16, 19 March 2015 by Alec (Talk | contribs)

Jump to: navigation, search

Definition

Given a measure space [ilmath](X,\mathcal{A},\mu)[/ilmath]

We call it a probability space if [math]\mu[/math] is a Probability measure[1], which means that [math]\mu(X)=1[/math]


A Probability space is usually denoted [ilmath](\Omega,\mathcal{A},\mathbb{P})[/ilmath], here:

Name Symbol Type Description
  • State space
  • Sample space
[ilmath]\Omega[/ilmath] Set All the different states one can have or samples one can take
  • Event space
[ilmath]\mathcal{A} [/ilmath] [ilmath]\sigma[/ilmath]-algebra The events we can have
  • Probability measure
[ilmath]\mathbb{P} [/ilmath] Function [math]\mathbb{P}:\mathcal{A}\rightarrow[0,1]\subset\mathbb{R}[/math] Assigns probabilities to events

Example

Discrete probability space

Let us consider two die being thrown as our state or sample space - I prefer state because it is the set of states the experiment may take.

Then:

Part of prob. space Definition Comment
State space [math]\begin{array}{lr} \Omega=\{ & (1,1), & (1,2), & \cdots &, (1,6),\\ & (2,1), & (2,2), & \cdots &, (2,6), \\ & \vdots \\ & (6,1), & (6,2), & \cdots &, (6,6) & \} \end{array}[/math] The set of all possible states, there are 36 all-together.
Event space [math]\mathcal{P}(\Omega)[/math] (see power set)

= all subsets of [ilmath]\Omega[/ilmath]

Union works as or, for example [math]\{(1,2),(3,4)\}[/math] is the event that we get [ilmath](1,2)[/ilmath] or [ilmath](3,4)[/ilmath]
Probability measure [math]\mathbb{P}:\mathcal{P}(\Omega)\rightarrow[0,1]\subset\mathbb{R}[/math] where:

[math]\mathbb{P}(A)\mapsto \frac{1}{36}|A|[/math]

Clearly [math]\mathbb{P}(\Omega)=1[/math] and this is a measure!

This example alone isn't very interesting, it becomes interesting when one considers the random variable which could be for example the sum of the values shown on the die. That example is used on the random variable page.

Continuous probability space


TODO: Think of example - Normal?



See also

References

  1. p22 - Measures, Integrals and Martingales - Rene L. Schilling