Lebesgue measure

From Maths
Revision as of 18:32, 15 March 2015 by Alec (Talk | contribs)

Jump to: navigation, search


Definition

The set function [math]\lambda^n:(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))\rightarrow\mathbb{R}_{\ge}[/math][1] that assigns every half-open rectangle [math][[a,b))=[a_1,b_1)\times\cdots\times[a_n,b_n)\in\mathcal{J}[/math] as follows:

[math]\lambda^n\Big([[a,b))\Big)=\Pi^n_{i=1}(b_i-a_i)[/math]

Where [math]\mathcal{J}=[/math] the set of all half-open-half-closed 'rectangles' in [math]\mathbb{R}^n[/math]

Note that it can be shown [math]\mathcal{B}(\mathbb{R}^n)=\sigma(\mathcal{J})[/math] where [math]\sigma(\mathcal{J})[/math] is the [[Sigma-algebra|[ilmath]\sigma[/ilmath]-algebra generated by [math]\mathcal{J}[/math]

References

  1. P27 - Measures, Integrals and Martingales - Rene L. Schilling