Exercises:Mond - Topology - 2/Section B/Question 7

From Maths
< Exercises:Mond - Topology - 2‎ | Section B
Revision as of 11:23, 19 October 2016 by Alec (Talk | contribs) (Saving work)

Jump to: navigation, search

Section B

Question 7

Both the Klein bottle and the real projective plane are 2-manifolds[Note 1]. This is not obvious from their descriptions as quotients of the square by an equivalence relation. In fact each point x does have an open neighbourhood homeomorphic to an open set in R2. Show by carefully labelled drawings that this is true if:

  1. x is in the image of the interior of the square.
    • Caution:Mond VERY PROBABLY ALMOST CERTAINLY means the interior of the square considered as a set in R2, as of course the square's interior is itself when considered as a topological subspace
  2. x is in the image of an edge in the square, but not of a vertex.
  3. x is the image of a vertex.

Your drawings for 2 and 3 have to make use of the fact that the edges of the square are glue together in passing to the quotient.

Solution

Definitions

We take the following diagrams as the "square-edge-gluing" (identification?) diagrams used:

The Klein bottle RP2
Solution body

Notice this is RP2 in the first column. Pictures have comments underneath.


TODO: Explain what is going on


Type RP2 Klein bottle
Case 1
RP2InsideLocally.JPG
KBottleInsideLocally.JPG
Case 2
RP2EdgeLocally.JPG
KBottleEdgeLocally.JPG
The other cases are essentially the same just with the nearest vertex (marked here as π(v0)=π(v3)) on the other side, or the arrows going another direction. The other cases are just as in the already shown RP2 case, possibly with arrows in a different direction, or the nearest vertex on the other side.
Case 3
RP2VertexLocally.JPG
KBottleVertexLocally.JPG
The other case is essentially the same just with the arrow directions reversed There is no other case. I have put α,β,γ and δ in each quadrant to show which shaded in bit belongs to which

Notes

  1. Jump up Manifolds of the topological variety

References