Notes:Homology/Real projective plane
From Maths
< Notes:Homology
Revision as of 01:40, 16 October 2016 by Alec (Talk | contribs) (→{{M|\mathbb{RP}^2_B}}: Forgot overflow)
[ilmath]\mathbb{RP}^2_A[/ilmath]
The chain complexes are: [ilmath]\xymatrix{ 0 \ar[r]^{\partial_3} & C_2 \ar[r]^{\partial_2} \ar@2{->}[d] & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\ & \langle P\rangle\cong\mathbb{Z}^1 & \langle a\rangle\cong\mathbb{Z}^1 & \langle v\rangle\cong\mathbb{Z}^1 }[/ilmath]with:
- [ilmath]\partial_2(P)=a+a=2a[/ilmath]
- [ilmath]\partial_1(a)=v-v=0[/ilmath]
- [ilmath]\partial_0(v)=0[/ilmath]
On paper I ended up with:
- [ilmath]H_0\cong\mathbb{Z}[/ilmath]
- [ilmath]H_1\cong\frac{\mathbb{Z} }{2\mathbb{Z} }[/ilmath]
- [ilmath]H_2\cong 0[/ilmath]
[ilmath]\mathbb{RP}^2_B[/ilmath]
The chain complexes are: [ilmath]\xymatrix{0 \ar[r]^{\partial_3} & C_2 \ar[r]^{\partial_2} \ar@2{->}[d] & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\ & \langle P\rangle\cong\mathbb{Z}^1 & \langle a, b\rangle\cong\mathbb{Z}^2 & \langle v,w\rangle\cong\mathbb{Z}^2 }[/ilmath]With:
- [ilmath]\partial_2(P)=2(a+b)[/ilmath]
- [ilmath]\partial_1[/ilmath]
- [ilmath]\partial_1(a)=w-v[/ilmath]
- [ilmath]\partial_1(b)=v-w[/ilmath]
- [ilmath]\partial_0[/ilmath]
- [ilmath]\partial_0(v)=0[/ilmath]
- [ilmath]\partial_0(w)=0[/ilmath]
On paper I ended up with:
- [ilmath]H_2\cong 0[/ilmath]
- [ilmath]H_1\cong\frac{\mathbb{Z} }{2\mathbb{Z} }[/ilmath]
- [ilmath]H_0\cong\mathbb{Z}[/ilmath]