Task:Characteristic property of the subspace topology
From Maths
Revision as of 02:59, 7 August 2016 by Alec (Talk | contribs) (Created page with "{{Stub page|grade=A|msg=Needs to be added to the "pending task" category (when that template is created) and also needs to have the proof reviewed}} __TOC__ ==Statement== <div...")
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Needs to be added to the "pending task" category (when that template is created) and also needs to have the proof reviewed
Contents
Statement
- [ilmath]f:Y\rightarrow S[/ilmath] is continuous if and only if the map [ilmath]i_S\circ f:Y\rightarrow X[/ilmath] is continuous (where [ilmath]i_S:S\rightarrow X[/ilmath] is the canonical injection given by [ilmath]i_S:s\mapsto s[/ilmath])
Proof
[ilmath]f:Y\rightarrow S[/ilmath] is continuous [ilmath]\implies[/ilmath] [ilmath]i_S\circ f:Y\rightarrow X[/ilmath] is continuous
- Let [ilmath]U\in\mathcal{J} [/ilmath] be an open set in [ilmath]X[/ilmath]; we must show [ilmath](i_S\circ f)^{-1}(U)\in\mathcal{L} [/ilmath] (that [ilmath](i_S\circ f)^{-1}(U)[/ilmath] is open in [ilmath]Y[/ilmath])
- Note that [ilmath](i_S\circ f)^{-1}(U)=(f^{-1}\circ i_S^{-1})(U)=f^{-1}(i_S^{-1}(U))[/ilmath] (using sufficient abusive of notation, as [ilmath]g^{-1} [/ilmath] for any map [ilmath]g[/ilmath] might not be a map itself)
- Furthermore, [ilmath]i_S^{-1}(U)=U\cap S[/ilmath]
- Thus we see [ilmath](i_S\circ f)^{-1}(U)=f^{-1}(U\cap S)[/ilmath]
- By hypothesis, [ilmath]f:Y\rightarrow S[/ilmath] is continuous, so:
- [ilmath]\forall V\in\mathcal{K}[f^{-1}(V)\in\mathcal{L}][/ilmath]
- Thus the proof hinges on whether or not [ilmath]U\cap S\in\mathcal{K} [/ilmath]
- By definition of [ilmath]\mathcal{K} [/ilmath] (the (subspace) topology on [ilmath]S[/ilmath]) we see:
- [ilmath]A\in\mathcal{K}\iff\exists B\in\mathcal{J}[B\cap S=A][/ilmath]
- Defining [ilmath]A:=U\cap S[/ilmath] we see, as [ilmath]U\in\mathcal{J} [/ilmath] that there does exist a [ilmath]B\in\mathcal{J} [/ilmath] such that [ilmath]B\cap S=A=U\cap S[/ilmath] - namely [ilmath]B:=U[/ilmath] itself.
- By definition of [ilmath]\mathcal{K} [/ilmath] (the (subspace) topology on [ilmath]S[/ilmath]) we see:
- We have shown [ilmath]U\cap S\in\mathcal{K} [/ilmath], thus by hypothesis of continuity of [ilmath]f:Y\rightarrow S[/ilmath] we see:
- [ilmath]f^{-1}(U\cap S)\in\mathcal{L}[/ilmath] - that is to say that [ilmath]f^{-1}(U\cap S)[/ilmath] is open in [ilmath]Y[/ilmath].
- Since [ilmath](i_S\circ f)^{-1}(U)=f^{-1}(U\cap S)\in\mathcal{L}[/ilmath] we see [ilmath](i_S\circ f)^{-1}(U)\in\mathcal{L}[/ilmath]
- As [ilmath]U\in\mathcal{J} [/ilmath] was arbitrary we have shown: [ilmath]\forall U\in\mathcal{J}[(i_S\circ f)^{-1}(U)\in\mathcal{L}][/ilmath] - that [ilmath](i_S\circ f)[/ilmath] is continuous, as required.
[ilmath]i_S\circ f:Y\rightarrow X[/ilmath] is continuous [ilmath]\implies[/ilmath] [ilmath]f:Y\rightarrow S[/ilmath] is continuous
- Let [ilmath]U\in\mathcal{K} [/ilmath] be given ([ilmath]U[/ilmath] is open in [ilmath]S[/ilmath]), we wish to show that [ilmath]f^{-1}(U)\in\mathcal{L} [/ilmath], that [ilmath]f^{-1}(U)[/ilmath] is open in [ilmath]Y[/ilmath].
- Then, as [ilmath](S,\mathcal{ K })[/ilmath] is a subspace, there exists a [ilmath]V\in\mathcal{J} [/ilmath] ([ilmath]V[/ilmath] open in [ilmath]X[/ilmath]) such that [ilmath]U=V\cap S[/ilmath]
- As [ilmath]i_S\circ f:Y\rightarrow X[/ilmath] is continuous:
- [ilmath]\forall A\in\mathcal{J}[(i_S\circ f)^{-1}(A)\in\mathcal{L}][/ilmath]
- So we see [ilmath](i_S\circ f)^{-1}(V)\in\mathcal{L} [/ilmath]
- This means [ilmath]f^{-1}(i_S^{-1}(V))\in\mathcal{L} [/ilmath]
- But [ilmath]i_S^{-1}(V)=V\cap S[/ilmath], so
- We're really saying: [ilmath]f^{-1}(V\cap S)\in\mathcal{L}[/ilmath]
- Recall: [ilmath]U=V\cap S[/ilmath], so:
- [ilmath]f^{-1}(U)\in\mathcal{L}[/ilmath], as required.
- As [ilmath]i_S\circ f:Y\rightarrow X[/ilmath] is continuous:
- Then, as [ilmath](S,\mathcal{ K })[/ilmath] is a subspace, there exists a [ilmath]V\in\mathcal{J} [/ilmath] ([ilmath]V[/ilmath] open in [ilmath]X[/ilmath]) such that [ilmath]U=V\cap S[/ilmath]
- Since [ilmath]U\in\mathcal{K} [/ilmath] was arbitrary we have shown: [ilmath]\forall U\in\mathcal{K}[f^{-1}(U)\in\mathcal{L}][/ilmath], the very definition of [ilmath]f[/ilmath] being continuous.
This completes the proof.
References