Notes:First order language
From Maths
Definition
A first order language, [ilmath]L[/ilmath], consists of two types of symbols:
- Logical symbols
- A sequence of variables, [ilmath]x_1,x_2,\ldots[/ilmath] (this is the alphabetical order of the variables)
- logical connectives, [ilmath]\neg[/ilmath] (negation), [ilmath]\vee[/ilmath] (disjunction - posh way of saying "or"),
- a logical quantifier [ilmath]\exists[/ilmath] (existential qualifier) and
- the equality symbol, [ilmath]=[/ilmath]
- Non-logical symbols (which vary from theory to theory)
- A set of constant symbols, [ilmath]\{c_i\vert i\in I\} [/ilmath],
- for each positive integer, [ilmath]n\in\mathbb{N}_{\ge 1} [/ilmath] a set of [ilmath]n[/ilmath]-ary function symbols, [ilmath]\{f_j\vert j\in J_n\} [/ilmath]
- for each positive integer, [ilmath]n\in\mathbb{N}_{\ge 1} [/ilmath] a set of [ilmath]n[/ilmath]-ary relation symbols, [ilmath]\{p_k\vert k\in K_n\} [/ilmath]
Terminology
- Expression - any finite sequence of symbols of a language.