Open ball
Definition
For a metric space (X,d)
Br(a)=B(a;r)={x∈X|d(a,x)<r}
Proof that an open ball is open
Take the open ball Bϵ(p)
Let x∈Bϵ(p)
Choose r=ϵ−d(x,p)
We now need to show that Br(x)⊂Bϵ(p)
Br(x)⊂Bϵ(p)
So let y∈Br(x)
y∈Br(x)⟺d(y,x)<r=ϵ−d(x,p)
d(y,x)<ϵ−d(x,p)⟺d(y,x)+d(x,p)<ϵ
But by the Triangle inequality part of the metric d(y,p)≤d(y,x)+d(x,p)<ϵ
So d(y,p)<ϵ⟺y∈Bϵ(p)
We have shown that y∈Br(x)⟹y∈Bϵ(p)⟺Br(x)⊂Bϵ(p)