Equivalence relation
Contents
Definition
A relation [ilmath]\sim[/ilmath] in [ilmath]X[/ilmath][Notes 1] is an equivalence relation if it has the following properties[1]:
- Reflexivity, [ilmath]x\sim x[/ilmath]
- Symmetricity, [ilmath]x\sim y[/ilmath] implies [ilmath]y\sim x[/ilmath]
- Transitivity, [ilmath]x\sim y[/ilmath] and [ilmath]y\sim z[/ilmath] implies [ilmath]x\sim z[/ilmath].
Name | Definition | |
---|---|---|
1 | Reflexive | [ilmath]\forall x\in X[(x,x) \in \sim][/ilmath]. Often written [ilmath]\forall x\in X[x\sim x][/ilmath]. |
2 | Symmetric | [ilmath]\forall x,y\in X[M[/ilmath]. Often written [ilmath]\forall x,y \in X[x\sim y \implies y\sim x][/ilmath]. |
3 | Transitive | [ilmath]\forall x,y,z\in X[((x,y) \in \sim \wedge (y,z) \in \sim) \implies (x,z) \in \sim][/ilmath]. Often written [ilmath]\forall x,y,z \in X [(x\sim y \wedge y\sim z) \implies x\sim z][/ilmath]. |
Terminology
- Sometimes, letters and other designations are used with symbols to distinguish between different equivalence relations, such as [ilmath]a \equiv_x b[/ilmath].
- For an [ilmath]x\in X[/ilmath], the equivalence class is written [ilmath][x][/ilmath] or [ilmath]x_\sim[/ilmath]. That is, [ilmath]\forall a\in X[a\in[x] \implies a\sim x][/ilmath].
See Also
Notes
- ↑ This terminology means [ilmath]\sim \subseteq X\times X[/ilmath], as described on the relation page.
References
|
Old Page
An equivalence relation is a special kind of relation
Required properties
Given a relation [ilmath]R[/ilmath] in [ilmath]A[/ilmath] we require the following properties to define a relation (these are restated for convenience from the relation page)
Reflexive
A relation [ilmath]R[/ilmath] if for all [ilmath]a\in A[/ilmath] we have [ilmath]aRa[/ilmath]
Symmetric
A relation [ilmath]R[/ilmath] is symmetric if for all [ilmath]a,b\in A[/ilmath] we have [ilmath]aRb\implies bRa[/ilmath]
Transitive
A relation [ilmath]R[/ilmath] is transitive if for all [ilmath]a,b,c\in A[/ilmath] we have [ilmath]aRb\text{ and }bRc\implies aRc[/ilmath]
Definition
A relation [ilmath]R[/ilmath] is an equivalence relation if it is:
- reflexive
- symmetric
- transitive