Equivalent statements to compactness of a metric space

From Maths
Revision as of 16:29, 1 December 2015 by Alec (Talk | contribs) (Proof: Fixed typo)

Jump to: navigation, search

Theorem statement

Given a metric space [ilmath](X,d)[/ilmath], the following are equivalent[1][Note 1]:

  1. [ilmath]X[/ilmath] is compact
  2. Every sequence in [ilmath]X[/ilmath] has a subsequence that converges (AKA: having a convergent subsequence)
  3. [ilmath]X[/ilmath] is totally bounded and complete

Proof

[ilmath]1)\implies 2)[/ilmath]: [ilmath]X[/ilmath] is compact [ilmath]\implies[/ilmath] [ilmath]\forall(a_n)_{n=1}^\infty\subseteq X\ \exists[/ilmath] a sub-sequence [ilmath](a_{k_n})_{n=1}^\infty[/ilmath] that coverges in [ilmath]X[/ilmath]



TODO: Rest



Notes

  1. To say statements are equivalent means we have one [ilmath]\iff[/ilmath] one of the other(s)

References

  1. Introduction to Topology - Theodore W. Gamelin & Robert Everist Greene