Equivalent statements to compactness of a metric space
From Maths
Contents
Theorem statement
Given a metric space [ilmath](X,d)[/ilmath], the following are equivalent[1][Note 1]:
- [ilmath]X[/ilmath] is compact
- Every sequence in [ilmath]X[/ilmath] has a subsequence that converges (AKA: having a convergent subsequence)
- [ilmath]X[/ilmath] is totally bounded and complete
Proof
[ilmath]1)\implies 2)[/ilmath]: [ilmath]X[/ilmath] is compact [ilmath]\implies[/ilmath] [ilmath]\forall(a_n)_{n=1}^\infty\subseteq X\ \exists[/ilmath] a sub-sequence [ilmath](a_{k_n})_{n=1}^\infty[/ilmath] that coverges in [ilmath]X[/ilmath]
TODO: Rest
Notes
- ↑ To say statements are equivalent means we have one [ilmath]\iff[/ilmath] one of the other(s)
References