Cauchy criterion for convergence

From Maths
Revision as of 15:26, 24 November 2015 by Alec (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Iffy page

The purpose of this page is to show that on a complete space a sequence converges [ilmath]\iff[/ilmath] it is a Cauchy sequence

The Cauchy criterion for convergence requires the space be complete. I encountered it with sequences on [ilmath]\mathbb{R} [/ilmath] - there are of course other spaces! As such this page is being refactored.

See Cauchy sequence for a definition

Page resumes

If a sequence converges, it is the same as saying it matches the Cauchy criterion for convergence.

Cauchy Sequence

A sequence [math](a_n)^\infty_{n=1}[/math] is Cauchy if:

[math]\forall\epsilon>0\exists N\in\mathbb{N}:n> m> N\implies d(a_m,a_n)<\epsilon[/math]

Theorem

A sequence converges if and only if it is Cauchy


TODO: proof, easy stuff